summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorG Sri Harsha2020-05-19 23:58:33 +0530
committerGitHub2020-05-19 23:58:33 +0530
commit6391e4ee7b577235ab4e50ab59e44f58ca0cf50a (patch)
treed046b0903b6f43f081979391cc8edbdce6dbe491
parent828202816418ededf16deb15d3cf37d930ad5452 (diff)
downloadFSF-mathematics-python-code-archive-6391e4ee7b577235ab4e50ab59e44f58ca0cf50a.tar.gz
FSF-mathematics-python-code-archive-6391e4ee7b577235ab4e50ab59e44f58ca0cf50a.tar.bz2
FSF-mathematics-python-code-archive-6391e4ee7b577235ab4e50ab59e44f58ca0cf50a.zip
Add files via upload
-rw-r--r--FSF-2020/series-and-transformations/Power Series/script1.py128
-rw-r--r--FSF-2020/series-and-transformations/Power Series/script2.py94
-rw-r--r--FSF-2020/series-and-transformations/Power Series/script3.py156
-rw-r--r--FSF-2020/series-and-transformations/Power Series/script4.py108
-rw-r--r--FSF-2020/series-and-transformations/Power Series/script5.py136
5 files changed, 622 insertions, 0 deletions
diff --git a/FSF-2020/series-and-transformations/Power Series/script1.py b/FSF-2020/series-and-transformations/Power Series/script1.py
new file mode 100644
index 0000000..28eb07c
--- /dev/null
+++ b/FSF-2020/series-and-transformations/Power Series/script1.py
@@ -0,0 +1,128 @@
+from manimlib.imports import *
+
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ expansion.scale(0.7)
+ return expansion
+
+class pieChart(Scene):
+ def construct(self):
+ circle1=Circle(radius=3,color=BLUE)
+ powerText=TextMobject("Power Series")
+ powerText.scale(0.8)
+ self.play(FadeIn(powerText))
+ self.play(ShowCreation(circle1))
+ self.wait(1)
+
+ powerGroup=VGroup(circle1,powerText)
+
+ self.play(ApplyMethod(powerGroup.scale,0.5))
+ self.play(ApplyMethod(powerGroup.move_to,2.2*UP))
+ self.wait(0.5)
+ expansion_power_coeff=[]
+ variables_power=[]
+ expansion_power=formFormula(expansion_power_coeff,variables_power)
+ self.play(ReplacementTransform(powerText,expansion_power))
+ self.wait(1)
+
+ circle2=Circle(radius=1.5)
+ circle2.shift(2.2*UP)
+ expansion_geo_coeff=[0]*3
+ variables_geo=[0]*3
+ arrow1_2=Line(start=0.7*UP,end=2.5*LEFT)
+ expansion_geo_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ for i in range(0,3):
+ expansion_geo_coeff[i].set_color(GOLD_A)
+ variables_geo=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ expansion_geo_coeff[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ variables_geo[i].next_to(expansion_geo_coeff[i],buff=0.1)
+ if i!=2:
+ expansion_geo_coeff[i+1].next_to(variables_geo[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variables_geo[2])
+ expansion_geo=VGroup(expansion_geo_coeff[0],expansion_geo_coeff[1],expansion_geo_coeff[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
+ expansion_geo.scale(0.7)
+
+ self.play(ApplyMethod(circle2.shift,4*LEFT+2.5*DOWN),ApplyMethod(expansion_geo.shift,4*LEFT+2.5*DOWN))
+ self.add(arrow1_2)
+ self.wait(1)
+
+ ones=[TextMobject("1"),TextMobject("1"),TextMobject("1")]
+ for i in range(0,3):
+ ones[i].set_color(GOLD_A)
+ ones[0].shift(0.3*DOWN,5*LEFT)
+ ones[1].next_to(ones[0],buff=0.5)
+ ones[2].next_to(ones[1],buff=0.7)
+ self.play(ReplacementTransform(expansion_geo_coeff[0],ones[0]),ReplacementTransform(expansion_geo_coeff[1],ones[1]),ReplacementTransform(expansion_geo_coeff[2],ones[2]))
+ self.wait(1)
+ expansion_geo=VGroup(ones[0],ones[1],ones[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
+
+ expansion_geo_final=TextMobject("$1+x+{ x }^{ 2 }..$")
+ expansion_geo_final.scale(0.8)
+ expansion_geo_final.shift(0.3*DOWN+4*LEFT)
+ self.play(ReplacementTransform(expansion_geo,expansion_geo_final))
+ self.wait(1)
+
+ circle3=Circle(radius=1.5,color=GREEN)
+ circle3.shift(2.2*UP)
+ expansion_taylor_coeff=[0]*3
+ variables_taylor=[0]*3
+ arrow1_3=Line(start=0.7*UP,end=DOWN*0.3)
+ expansion_taylor_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ for i in range(0,3):
+ expansion_taylor_coeff[i].set_color(GOLD_A)
+ variables_taylor=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ expansion_taylor_coeff[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ variables_taylor[i].next_to(expansion_taylor_coeff[i],buff=0.1)
+ if i!=2:
+ expansion_taylor_coeff[i+1].next_to(variables_taylor[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variables_taylor[2])
+ expansion_taylor=VGroup(expansion_taylor_coeff[0],expansion_taylor_coeff[1],expansion_taylor_coeff[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
+ expansion_taylor.scale(0.7)
+
+ self.play(ApplyMethod(circle3.shift,4*DOWN),ApplyMethod(expansion_taylor.shift,4*DOWN))
+ self.add(arrow1_3)
+ self.wait(1)
+
+ differentials=[TextMobject("$f(0)$"),TextMobject("${ f'\left( 0 \\right) }$"),TextMobject("$\\frac { f''\left( 0 \\right) }{ 2! }$")]
+ for i in range(0,3):
+ differentials[i].set_color(GOLD_A)
+ differentials[0].shift(1.8*DOWN+1.15*LEFT)
+ differentials[1].shift(1.8*DOWN+0.45*LEFT)
+ differentials[2].shift(1.8*DOWN+0.45*RIGHT)
+ differentials[0].scale(0.35)
+ differentials[1].scale(0.35)
+ differentials[2].scale(0.35)
+ self.play(ReplacementTransform(expansion_taylor_coeff[0],differentials[0]),ReplacementTransform(expansion_taylor_coeff[1],differentials[1]),ReplacementTransform(expansion_taylor_coeff[2],differentials[2]))
+ self.wait(2)
+ expansion_taylor_final=VGroup(differentials[0],differentials[1],differentials[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
+
+ self.play(FadeOut(expansion_geo_final),FadeOut(expansion_taylor_final))
+ geoText=TextMobject("Geometric Series")
+ geoText.scale(0.7)
+ geoText.shift(4*LEFT+0.3*DOWN)
+ taylorText=TextMobject("Taylor Series")
+ taylorText.scale(0.7)
+ taylorText.shift(1.8*DOWN)
+ self.play(FadeIn(geoText),FadeIn(taylorText))
+ self.wait(1)
+
+ soOntext=TextMobject("So on..!")
+ soOntext.shift(4*RIGHT)
+ soOntext.scale(0.8)
+ self.play(FadeIn(soOntext))
+ self.wait(2)
diff --git a/FSF-2020/series-and-transformations/Power Series/script2.py b/FSF-2020/series-and-transformations/Power Series/script2.py
new file mode 100644
index 0000000..72356c6
--- /dev/null
+++ b/FSF-2020/series-and-transformations/Power Series/script2.py
@@ -0,0 +1,94 @@
+from manimlib.imports import *
+import numpy as np
+
+
+class convergence(Scene):
+ def construct(self):
+ originalFormula=TextMobject("$\sum _{ n=0 }^{ \infty }{ { a }_{ n }{ x }^{ n } }$")
+ originalFormula.set_color(RED)
+ self.play(Write(originalFormula))
+ self.wait(1)
+ self.play(ApplyMethod(originalFormula.shift,2.7*UP))
+ self.wait(1)
+
+ terms=["$a_{ 0 }$","$a_{ 1 }x$","$a_{ 2 }x^{ 2 }$","$a_{ 3 }x^{ 3 }$","$a_{ 4 }x^{ 4 }$","$a_{ 5 }x^{ 5 }$","$a_{ 6 }x^{ 6 }$","$a_{ 7 }x^{ 7 }$","$a_{ 8 }x^{ 8 }$","$a_{ 9 }x^{ 9 }$","$a_{ 10 }x^{ 10 }$","$a_{ 11 }x^{ 11 }$"]
+ termsTogetherString="+".join(terms)
+ termsTogether=TextMobject(termsTogetherString+"...")
+ termsTogether.scale(0.8)
+ termsTogether.shift(2.7*UP)
+ self.play(ReplacementTransform(originalFormula,termsTogether))
+ self.wait(1)
+
+ termMobjectRect=[0]*12
+ termMobject=TextMobject(terms[0])
+ termMobject.shift(2.7*UP+6.2*LEFT)
+ for i in range(1,13):
+ termMobjectOld=termMobject
+ termMobjectOld.scale(0.8)
+ if(i<12):
+ termMobject=TextMobject(terms[i])
+ termMobject.next_to(termMobjectOld)
+ if(i==1):
+ rectDefine=TextMobject("Here","each rectangle","represents the","value of the term")
+ rectDefine.set_color_by_tex_to_color_map({"each rectangle":BLUE,"value of the term":YELLOW})
+ rectDefine.scale(0.7)
+ rectDefine.shift(3.2*DOWN)
+ self.play(Write(rectDefine))
+ self.wait(1)
+ if(i==2):
+ ratio=TextMobject("If $\\frac { a_{ n+1 } }{ { a }_{ n } } < 1$")
+ ratio.set_color(RED)
+ ratio.scale(0.7)
+ ratio.move_to(3.2*DOWN)
+ inequality=TextMobject("$a_{ n+1 } < a_{ n }$")
+ inequality.set_color(RED)
+ inequality.scale(0.7)
+ inequality.move_to(3.2*DOWN)
+ self.play(FadeOut(rectDefine))
+ self.play(Write(ratio))
+ self.wait(1)
+ self.play(ReplacementTransform(ratio,inequality))
+ self.wait(1)
+ #self.play(ApplyMethod(termMobjectOld.move_to,(2-0.3*i)*DOWN+RIGHT*0.2*i))
+ termMobjectRect[i-1]=Rectangle(height=0.1,width=(5-0.4*i))
+ termMobjectRect[i-1].move_to((2-0.2*i)*DOWN+RIGHT*0.2*i)
+ #rectangles[p] = termMobjectRect
+ #p+=1
+ self.play(ReplacementTransform(termMobjectOld,termMobjectRect[i-1]))
+
+ uparrow=TextMobject("$\\uparrow$")
+ uparrow.set_color(GREEN)
+ uparrow.scale(6)
+ uparrow.shift(4*RIGHT+0.5*DOWN)
+ self.play(ShowCreation(uparrow))
+ self.wait(1)
+
+ converges=TextMobject("Converges!")
+ converges.set_color(RED)
+ converges.scale(0.6)
+ converges.next_to(uparrow)
+ self.play(FadeIn(converges))
+ self.wait(2)
+
+ self.play(FadeOut(converges),FadeOut(uparrow),FadeOut(inequality))
+ self.wait(0.5)
+ rect=VGroup(termMobjectRect[0],termMobjectRect[1],termMobjectRect[2],termMobjectRect[3],termMobjectRect[4],termMobjectRect[5],termMobjectRect[6],termMobjectRect[7],termMobjectRect[8],termMobjectRect[9],termMobjectRect[10],termMobjectRect[11])
+ self.play(ApplyMethod(rect.scale,0.2))
+ for i in range(0,12):
+ self.play(ApplyMethod(termMobjectRect[i].shift,i*0.04*DOWN+(11-(3-0.11*i)*i)*LEFT*0.3))
+ func=TextMobject("$\\approx$","$f(x)$")
+ func.set_color_by_tex_to_color_map({"$f(x)$":RED})
+ func.scale(0.8)
+ func.shift(DOWN+4.5*RIGHT+0.1*UP)
+ self.play(FadeIn(func))
+
+ rightarrow=TextMobject("$\\rightarrow$")
+ rightarrow.set_color(GREEN)
+ rightarrow.scale(4)
+ rightarrow.shift(2*DOWN)
+ converges=TextMobject("Hence even the","sum converges!")
+ converges.set_color_by_tex_to_color_map({"sum converges!":RED})
+ converges.move_to(3*DOWN)
+ converges.scale(0.7)
+ self.play(Write(rightarrow),FadeIn(converges))
+ self.wait(2)
diff --git a/FSF-2020/series-and-transformations/Power Series/script3.py b/FSF-2020/series-and-transformations/Power Series/script3.py
new file mode 100644
index 0000000..f710f42
--- /dev/null
+++ b/FSF-2020/series-and-transformations/Power Series/script3.py
@@ -0,0 +1,156 @@
+from manimlib.imports import*
+import math
+
+class intro(Scene):
+ def construct(self):
+ introText1=TextMobject("Let's analyse")
+ introText2=TextMobject("for")
+ function_main=TextMobject("$\sum { { (-1) }^{ n }{ x }^{ 2n } }$")
+ function_main.set_color(GREEN)
+ introText1.scale(1.2)
+ introText1.shift(2*UP)
+ introText2.scale(0.7)
+ introText2.shift(UP)
+ function_main.scale(2)
+ function_main.shift(DOWN)
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.set_color(RED)
+ function_expan.scale(1.2)
+ function_expan.shift(2*UP)
+
+ self.play(Write(introText1))
+ self.play(FadeIn(introText2))
+ self.wait(0.5)
+ self.play(Write(function_main))
+ self.wait(1)
+
+ self.play(FadeOut(introText1),FadeOut(introText2))
+ self.play(ApplyMethod(function_main.shift,3*UP))
+ self.wait(0.5)
+ self.play(ReplacementTransform(function_main,function_expan))
+ self.wait(1)
+ self.play(ApplyMethod(function_expan.scale,0.5))
+ function_expan.to_edge(UP+RIGHT)
+ self.play(ReplacementTransform(function_expan,function_expan))
+ self.wait(1)
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-1, 2, 1),
+ "y_labeled_nums": range(0,2,1)
+ }
+
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.set_color(RED)
+ function_expan.scale(0.6)
+ function_expan.to_edge(UP+RIGHT)
+ self.add(function_expan)
+
+ self.setup_axes(animate=True)
+
+ eqText=[TextMobject("$1$"),TextMobject("$1-{ x }^{ 2 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }$")]
+ for i in range(0,len(eqText)):
+ eqText[i].scale(0.6)
+ eqText[i].set_color(BLUE)
+ eqText[i].shift(ORIGIN+UP*2*y_each_unit+RIGHT*3.3*x_each_unit)
+ eqTextTerm=TextMobject("And so on..!")
+ eqTextTerm.set_color(BLUE)
+ eqTextTerm.scale(0.6)
+ eqTextTerm.shift(ORIGIN+UP*2*y_each_unit+3*RIGHT*x_each_unit)
+ equation1 = self.get_graph(lambda x : 1,color = RED,x_min = -8,x_max=8)
+ equation2 = self.get_graph(lambda x : 1-math.pow(x,2),color = RED,x_min = -1.7,x_max=1.7)
+ equation3 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4),color = RED,x_min = -1.6,x_max=1.6)
+ equation4 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6),color = RED,x_min = -1.45,x_max=1.45)
+ equation5 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8),color = RED,x_min = -1.35,x_max=1.35)
+ equation6 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10),color = RED,x_min = -1.3,x_max=1.3)
+ equation7 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12),color = RED,x_min = -1.25,x_max=1.25)
+ equation8 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14),color = RED,x_min = -1.2,x_max=1.2)
+ equation9 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16),color = RED,x_min = -1.15,x_max=1.15)
+ equation10 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.15,x_max=1.15)
+
+ textBtwAnim1=TextMobject("Here the graph just","oscilates")
+ textBtwAnim1.set_color_by_tex_to_color_map({"oscilates":BLUE})
+ textBtwAnim2=TextMobject("after","the","point","(as we add higher order terms)")
+ textBtwAnim2.set_color_by_tex_to_color_map({"after":BLUE,"point":YELLOW})
+ textBtwAnim3=TextMobject("$x=1$")
+ textBtwAnim1.scale(0.4)
+ textBtwAnim2.scale(0.4)
+ textBtwAnim3.scale(1.2)
+ textBtwAnim1.shift(2.1*DOWN+4.3*RIGHT)
+ textBtwAnim2.shift(2.4*DOWN+4.1*RIGHT)
+ textBtwAnim3.shift(2.9*DOWN+4.3*RIGHT)
+
+ self.play(ShowCreation(equation1),run_time=0.8)
+ self.add(eqText[0])
+ self.wait(1)
+ self.play(ReplacementTransform(equation1,equation2),ReplacementTransform(eqText[0],eqText[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equation2,equation3),ReplacementTransform(eqText[1],eqText[2]))
+ self.wait(0.4)
+ self.play(ReplacementTransform(equation3,equation4),ReplacementTransform(eqText[2],eqText[3]))
+ self.wait(0.3)
+ self.play(FadeOut(eqText[3]))
+ self.play(FadeIn(eqTextTerm))
+ self.play(Write(textBtwAnim1),Write(textBtwAnim2))
+ self.play(FadeIn(textBtwAnim3))
+ self.play(ReplacementTransform(equation4,equation5))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation5,equation6))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation6,equation7))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation7,equation8))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation8,equation9))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation9,equation10))
+ self.wait(1)
+
+ self.play(FadeOut(textBtwAnim1),FadeOut(textBtwAnim2),FadeOut(textBtwAnim3),FadeOut(equation10),FadeOut(eqTextTerm))
+ self.wait(1)
+
+ convergeLine=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*RIGHT,color=WHITE)
+ divergeLineLeft=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*LEFT*8,color=RED)
+ divergeLineRight=Line(start=ORIGIN+x_each_unit*RIGHT,end=ORIGIN+x_each_unit*8*RIGHT,color=RED)
+ circle1=Circle(radius=0.01,color=PURPLE_E)
+ circle2=Circle(radius=0.01,color=PURPLE_E)
+ circle1.shift(ORIGIN+LEFT*x_each_unit)
+ circle2.shift(ORIGIN+RIGHT*x_each_unit)
+ convergeText=TextMobject("Converges")
+ divergeText1=TextMobject("Diverges")
+ divergeText2=TextMobject("Diverges")
+ convergeText.set_color(GREEN)
+ divergeText1.set_color(RED)
+ divergeText2.set_color(RED)
+ convergeText.scale(0.5)
+ divergeText1.scale(0.5)
+ divergeText2.scale(0.5)
+ convergeText.shift(1.6*UP)
+ divergeText1.shift(0.3*UP+1.5*LEFT)
+ divergeText2.shift(0.3*UP+1.5*RIGHT)
+ self.play(Write(divergeLineLeft),Write(divergeLineRight))
+ self.play(FadeIn(convergeLine))
+ self.wait(0.5)
+ self.play(FadeOut(self.axes))
+ self.play(Write(circle1),Write(circle2))
+ self.wait(0.5)
+ self.play(ApplyMethod(convergeLine.shift,1.3*UP),ApplyMethod(function_expan.shift,5*LEFT+DOWN))
+ self.play(FadeIn(convergeText),FadeIn(divergeText1),FadeIn(divergeText2))
+ self.wait(2)
+
diff --git a/FSF-2020/series-and-transformations/Power Series/script4.py b/FSF-2020/series-and-transformations/Power Series/script4.py
new file mode 100644
index 0000000..412d20c
--- /dev/null
+++ b/FSF-2020/series-and-transformations/Power Series/script4.py
@@ -0,0 +1,108 @@
+from manimlib.imports import *
+import math
+
+class intro(Scene):
+ def construct(self):
+ introText1=TextMobject("Consider the","above","example..")
+ introText1.scale(0.8)
+ introText1.set_color_by_tex_to_color_map({"above":YELLOW})
+ self.play(Write(introText1))
+ self.wait(1)
+
+class graphScene(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -5,
+ "x_max": 5,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-1, 2, 1),
+ "y_labeled_nums": range(0,2,1),
+ "y_axis_height":7,
+ "x_axis_width":7
+ }
+
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.scale(0.6)
+ function_expan.set_color(RED)
+ function_expan.to_edge(UP+RIGHT)
+ self.add(function_expan)
+
+ self.setup_axes()
+
+ equation = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.1,x_max=1.1)
+ self.play(ShowCreation(equation))
+ self.wait(1)
+
+ dashLineLeft=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
+ dashLineRight=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
+ dashLineLeft.shift(ORIGIN+LEFT*x_each_unit)
+ dashLineRight.shift(ORIGIN+RIGHT*x_each_unit)
+ radiusLine=Line(start=ORIGIN,end=ORIGIN+RIGHT*x_each_unit)
+ rangeLine=Line(start=ORIGIN+LEFT*x_each_unit,end=ORIGIN+RIGHT*x_each_unit)
+ circle=Circle(radius=x_each_unit)
+ movingPoint=Circle(radius=0.025)
+ movingPoint.shift(ORIGIN+RIGHT*x_each_unit)
+ circleEq1=self.get_graph(lambda x:math.sqrt(1-x**2),color=BLUE,x_max=-1,x_min=1)
+ circleEq2=self.get_graph(lambda x:-math.sqrt(1-x**2),color=BLUE,x_max=1,x_min=-1)
+
+ self.play(Write(dashLineLeft),Write(dashLineRight))
+ self.wait(1)
+
+ equation_updated=self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = GREEN,x_min = -1,x_max=1)
+ self.play(FadeOut(self.axes),ReplacementTransform(equation,equation_updated))
+ self.wait(0.5)
+ self.play(Write(radiusLine))
+ self.play(MoveAlongPath(movingPoint,circleEq1))
+ self.play(MoveAlongPath(movingPoint,circleEq2))
+ self.play(FadeIn(circle))
+ self.wait(1)
+
+ radiusText=TextMobject("Radius of convergence")
+ radiusText.scale(0.14)
+ radiusText.shift(ORIGIN+RIGHT*x_each_unit*0.45+DOWN*y_each_unit*0.2)
+
+ self.play(Write(radiusText))
+ self.wait(0.6)
+
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(5.5)
+ self.play(self.camera_frame.move_to, ORIGIN)
+ self.wait(1)
+ self.camera_frame.set_width(14)
+ self.wait(1.3)
+
+ self.play(FadeOut(radiusText),FadeOut(circle),FadeOut(movingPoint))
+ extendLine=Line(start=ORIGIN,end=ORIGIN+x_each_unit*LEFT)
+ self.play(Write(extendLine))
+ doubleArrow=TextMobject("$\longleftrightarrow$")
+ doubleArrow.scale(1.6)
+ doubleArrow.set_color(BLUE)
+ doubleArrow.shift(ORIGIN+DOWN*y_each_unit*0.5)
+ self.play(FadeIn(doubleArrow))
+ self.wait(1)
+ rangeText=TextMobject("Interval of convergence")
+ rangeText.scale(0.15)
+ rangeText.shift(ORIGIN+y_each_unit*DOWN)
+ self.play(Write(rangeText))
+ self.wait(0.6)
+
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(5.5)
+ self.play(self.camera_frame.move_to, ORIGIN)
+ self.wait(1)
+ self.camera_frame.set_width(14)
+ self.wait(1.5)
diff --git a/FSF-2020/series-and-transformations/Power Series/script5.py b/FSF-2020/series-and-transformations/Power Series/script5.py
new file mode 100644
index 0000000..e9681aa
--- /dev/null
+++ b/FSF-2020/series-and-transformations/Power Series/script5.py
@@ -0,0 +1,136 @@
+from manimlib.imports import *
+import math
+
+class uniformlyConvergent(Scene):
+ def construct(self):
+ introText1=TextMobject("Again consider the","above","example")
+ introText2=TextMobject("Let","$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$","and","x=0.5 $\in$(-1,1)")
+ introText3=TextMobject("Lets analyse..","!")
+ introText1.scale(0.8)
+ introText2.scale(0.7)
+ introText3.scale(0.9)
+ introText3.shift(DOWN)
+ introText1.set_color_by_tex_to_color_map({"above":YELLOW})
+ introText2.set_color_by_tex_to_color_map({"$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$":BLUE,"x=0.5 $\in$(-1,1)":YELLOW})
+ introText3.set_color_by_tex_to_color_map({"!":GREEN})
+ self.play(Write(introText1))
+ self.wait(0.5)
+ self.play(FadeOut(introText1))
+ self.play(Write(introText2))
+ self.play(FadeIn(introText3))
+ self.wait(2)
+
+
+def gety(x,n):
+ ans=0
+ for i in range(0,n+1):
+ if(i%2==0):
+ ans+=(math.pow(x,2*i))
+ else:
+ ans-=(math.pow(x,2*i))
+ return ans
+
+def makeSeries(x,points,x_each_unit,y_each_unit):
+ p=0
+ for point in points:
+ y=gety(x,p)
+ point.shift(ORIGIN+RIGHT*x_each_unit*p+UP*y_each_unit*y)
+ p+=1
+
+def makeLines(x,numPoints,x_each_unit,y_each_unit):
+ lines=[0]*numPoints
+ for i in range(0,numPoints-1):
+ y=gety(x,i)
+ y_next=gety(x,i+1)
+ lines[i]=Line(start=ORIGIN+RIGHT*x_each_unit*i+UP*y_each_unit*y,end=ORIGIN+RIGHT*x_each_unit*(i+1)+UP*y_each_unit*y_next,color=RED)
+ return lines
+
+class graphScene(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -6,
+ "x_max": 6,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$k$",
+ "y_axis_label": "$f(\\frac{1}{2})_k$",
+ "exclude_zero_label": True,
+ "x_axis_width":7,
+ "y_axis_height":7
+ }
+
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ sequence=TextMobject("$1$ , $1-(0.5)^2$ , $1-(0.5)^2+(0.5)^4..$")
+ sequence.set_color(RED)
+ sequence.scale(0.35)
+ sequence.to_edge(UP+RIGHT)
+ formula=TextMobject("$f(x)_{ k }=\sum _{ i=0 }^{ k }{ (-1)^{ i }(x)^{ 2i } } $")
+ formula.set_color(PURPLE_C)
+ formula.scale(0.4)
+ formula.shift(5.3*RIGHT+3*UP)
+ fLine=Line(start=ORIGIN+x_each_unit*6*LEFT,end=ORIGIN+x_each_unit*6*RIGHT)
+ fLine.shift(ORIGIN+(4/5)*y_each_unit*UP)
+ fLineText=TextMobject("$g(0.5)=\\frac { 4 }{ 5 } $")
+ fLineText.set_color(RED)
+ fLineText.scale(0.3)
+ fLineText.shift(UP*1.2*y_each_unit+RIGHT*x_each_unit+4*LEFT)
+ points=[Dot(radius=0.03,color=BLUE) for i in range(0,6)]
+ makeSeries(0.5,points,x_each_unit,y_each_unit)
+ lines=makeLines(0.5,6,x_each_unit,y_each_unit)
+
+
+ self.add(sequence)
+ self.add(formula)
+ self.setup_axes(animate=True)
+ self.play(Write(fLine))
+ self.add(fLineText)
+ for p in points:
+ self.add(p)
+ for p in range(0,5):
+ self.play(Write(lines[p]))
+ self.wait(0.5)
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(0.6)
+ self.play(self.camera_frame.move_to, points[0])
+ self.wait(0.4)
+ self.play(self.camera_frame.move_to, points[1])
+ self.wait(0.4)
+ self.play(self.camera_frame.move_to, points[2])
+ self.wait(0.3)
+ self.play(self.camera_frame.move_to, points[3])
+ self.wait(1)
+ self.play(self.camera_frame.move_to,ORIGIN)
+ self.camera_frame.set_width(14)
+ self.wait(1)
+
+ explanation1=TextMobject("Since the series","converges","to")
+ explanation1.set_color_by_tex_to_color_map({"converges":YELLOW})
+ explanation2=TextMobject("$\\frac {4}{5}$")
+ explanation2.set_color(BLUE)
+ explanation3=TextMobject("Hence","$\\forall \epsilon>0$,","$\exists k$","such that,")
+ explanation3.set_color_by_tex_to_color_map({"$\\forall \epsilon>0$":BLUE,"$\exists k$":YELLOW})
+ explanation4=TextMobject("$\left| { f\left( \\frac { 1 }{ 2 } \\right) }_{ k }-\\frac { 4 }{ 5 } \\right| <$","$\epsilon$")
+ explanation4.set_color_by_tex_to_color_map({"$\epsilon$":RED})
+ explanation1.scale(0.5)
+ explanation3.scale(0.5)
+ explanation1.shift(1.8*DOWN+3.5*RIGHT)
+ explanation2.shift(2.4*DOWN+3.5*RIGHT)
+ explanation3.shift(1.8*DOWN+3.5*RIGHT)
+ explanation4.shift(2.4*DOWN+3.5*RIGHT)
+
+ self.play(Write(explanation1))
+ self.play(FadeIn(explanation2))
+ self.wait(1)
+ self.play(FadeOut(explanation1),FadeOut(explanation2))
+ self.play(Write(explanation3))
+ self.play(Write(explanation4))
+ self.wait(2)