%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Tutorial slides on Python. % % Author: FOSSEE % Copyright (c) 2009, FOSSEE, IIT Bombay %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \documentclass[14pt,compress]{beamer} %\documentclass[draft]{beamer} %\documentclass[compress,handout]{beamer} %\usepackage{pgfpages} %\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm] % Modified from: generic-ornate-15min-45min.de.tex \mode { \usetheme{Warsaw} \useoutertheme{split} \setbeamercovered{transparent} } \usepackage[english]{babel} \usepackage[latin1]{inputenc} %\usepackage{times} \usepackage[T1]{fontenc} % Taken from Fernando's slides. \usepackage{ae,aecompl} \usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet} \usepackage{amsmath} \definecolor{darkgreen}{rgb}{0,0.5,0} \usepackage{listings} \lstset{language=Python, basicstyle=\ttfamily\bfseries, commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen}, showstringspaces=false, keywordstyle=\color{blue}\bfseries} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Macros \setbeamercolor{emphbar}{bg=blue!20, fg=black} \newcommand{\emphbar}[1] {\begin{beamercolorbox}[rounded=true]{emphbar} {#1} \end{beamercolorbox} } \newcounter{time} \setcounter{time}{0} \newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}} \newcommand{\typ}[1]{\lstinline{#1}} \newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} } %%% This is from Fernando's setup. % \usepackage{color} % \definecolor{orange}{cmyk}{0,0.4,0.8,0.2} % % Use and configure listings package for nicely formatted code % \usepackage{listings} % \lstset{ % language=Python, % basicstyle=\small\ttfamily, % commentstyle=\ttfamily\color{blue}, % stringstyle=\ttfamily\color{orange}, % showstringspaces=false, % breaklines=true, % postbreak = \space\dots % } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Title page \title[]{ODEs \& Finding Roots} \author[FOSSEE] {FOSSEE} \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay} \date[] {31, October 2009\\Day 1, Session 6} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo} %\logo{\pgfuseimage{iitmlogo}} %% Delete this, if you do not want the table of contents to pop up at %% the beginning of each subsection: \AtBeginSubsection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection,currentsubsection] \end{frame} } \AtBeginSection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection,currentsubsection] \end{frame} } % If you wish to uncover everything in a step-wise fashion, uncomment % the following command: %\beamerdefaultoverlayspecification{<+->} %\includeonlyframes{current,current1,current2,current3,current4,current5,current6} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DOCUMENT STARTS \begin{document} \begin{frame} \maketitle \end{frame} %% \begin{frame} %% \frametitle{Outline} %% \tableofcontents %% % You might wish to add the option [pausesections] %% \end{frame} \section{ODEs} \begin{frame}[fragile] \frametitle{ODE Integration} We shall use the simple ODE of a simple pendulum. \begin{equation*} \ddot{\theta} = -\frac{g}{L}sin(\theta) \end{equation*} \begin{itemize} \item This equation can be written as a system of two first order ODEs \end{itemize} \begin{align} \dot{\theta} &= \omega \\ \dot{\omega} &= -\frac{g}{L}sin(\theta) \\ \text{At}\ t &= 0 : \nonumber \\ \theta = \theta_0\quad & \&\quad \omega = 0 \nonumber \end{align} \end{frame} \begin{frame}[fragile] \frametitle{Solving ODEs using SciPy} \begin{itemize} \item We use the \typ{odeint} function from scipy to do the integration \item Define a function as below \end{itemize} \begin{lstlisting} In []: def pend_int(unknown, t, p): .... theta, omega = unknown .... g, L = p .... f=[omega, -(g/L)*sin(theta)] .... return f .... \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Solving ODEs using SciPy \ldots} \begin{itemize} \item \typ{t} is the time variable \\ \item \typ{p} has the constants \\ \item \typ{initial} has the initial values \end{itemize} \begin{lstlisting} In []: t = linspace(0, 10, 101) In []: p=(-9.81, 0.2) In []: initial = [10*2*pi/360, 0] \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Solving ODEs using SciPy \ldots} \begin{small} \typ{In []: from scipy.integrate import odeint} \end{small} \begin{lstlisting} In []: pend_sol = odeint(pend_int, initial,t, args=(p,)) \end{lstlisting} \end{frame} \section{Finding Roots} \begin{frame}[fragile] \frametitle{Roots of $f(x)=0$} \begin{itemize} \item Roots --- values of $x$ satisfying $f(x)=0$ \item $f(x)=0$ may have real or complex roots \item Presently, let's look at real roots \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{Initial Estimates} \begin{itemize} \item Find roots of $cosx-x^2$ in $(-\pi/2, \pi/2)$ \item How to get a rough initial estimate? \end{itemize} \begin{enumerate} \item Check for change of signs of $f(x)$ in the given interval \item A root lies in the interval where the sign change occurs \end{enumerate} \end{frame} \begin{frame}[fragile] \frametitle{Initial Estimates \ldots} \begin{lstlisting} In []: def our_f(x): ....: return cos(x)-x**2 ....: In []: x = linspace(-pi/2, pi/2, 11) \end{lstlisting} \begin{itemize} \item Get the intervals of x, where sign changes occur \end{itemize} \end{frame} %% \begin{frame}[fragile] %% \frametitle{Initial Estimates \ldots} %% \begin{lstlisting} %% In []: pos = y[:-1]*y[1:] < 0 %% In []: rpos = zeros(x.shape, dtype=bool) %% In []: rpos[:-1] = pos %% In []: rpos[1:] += pos %% In []: rts = x[rpos] %% \end{lstlisting} %% \end{frame} \begin{frame}[fragile] \frametitle{Fixed Point Method} \begin{enumerate} \item Convert $f(x)=0$ to the form $x=g(x)$ \item Start with an initial value of $x$ and iterate successively \item $x_{n+1}=g(x_n)$ and $x_0$ is our initial guess \item Iterate until $x_{n+1}-x_n \le tolerance$ \end{enumerate} \end{frame} %% \begin{frame}[fragile] %% \frametitle{Fixed Point \dots} %% \begin{lstlisting} %% In []: def our_g(x): %% ....: return sqrt(cos(x)) %% ....: %% In []: tolerance = 1e-5 %% In []: while abs(x1-x0)>tolerance: %% ....: x0 = x1 %% ....: x1 = our_g(x1) %% ....: %% In []: x0 %% \end{lstlisting} %% \end{frame} \begin{frame}[fragile] \frametitle{Bisection Method} \begin{enumerate} \item Start with an interval $(a, b)$ within which a root exists \item $f(a)\cdot f(b) < 0$ \item Bisect the interval. $c = \frac{a+b}{2}$ \item Change the interval to $(a, c)$ if $f(a)\cdot f(c) < 0$ \item Else, change the interval to $(c, b)$ \item Go back to 3 until $(b-a) \le$ tolerance \end{enumerate} \end{frame} %% \begin{frame}[fragile] %% \frametitle{Bisection \dots} %% \begin{lstlisting} %% In []: tolerance = 1e-5 %% In []: a = -pi/2 %% In []: b = 0 %% In []: while b-a > tolerance: %% ....: c = (a+b)/2 %% ....: if our_f(a)*our_f(c) < 0: %% ....: b = c %% ....: else: %% ....: a = c %% ....: %% \end{lstlisting} %% \end{frame} \begin{frame}[fragile] \frametitle{Newton Raphson Method} \begin{enumerate} \item Start with an initial guess of x for the root \item $\Delta x = -f(x)/f^{'}(x)$ \item $ x \leftarrow x + \Delta x$ \item Go back to 2 until $|\Delta x| \le$ tolerance \end{enumerate} \end{frame} %% \begin{frame}[fragile] %% \frametitle{Newton Raphson \dots} %% \begin{lstlisting} %% In []: def our_df(x): %% ....: return -sin(x)-2*x %% ....: %% In []: delx = 10*tolerance %% In []: while delx > tolerance: %% ....: delx = -our_f(x)/our_df(x) %% ....: x = x + delx %% ....: %% ....: %% \end{lstlisting} %% \end{frame} \begin{frame}[fragile] \frametitle{Newton Raphson \ldots} \begin{itemize} \item What if $f^{'}(x) = 0$? \item Can you write a better version of the Newton Raphson? \item What if the differential is not easy to calculate? \item Look at Secant Method \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{Scipy Methods - \typ{roots}} \begin{itemize} \item Calculates the roots of polynomials \item Array of coefficients is the only parameter \end{itemize} \begin{lstlisting} In []: coeffs = [1, 6, 13] In []: roots(coeffs) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Scipy Methods - \typ{fsolve}} \begin{small} \begin{lstlisting} In []: from scipy.optimize import fsolve \end{lstlisting} \end{small} \begin{itemize} \item Finds the roots of a system of non-linear equations \item Input arguments - Function and initial estimate \item Returns the solution \end{itemize} \begin{lstlisting} In []: fsolve(our_f, -pi/2) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Scipy Methods \dots} \begin{small} \begin{lstlisting} In []: from scipy.optimize import fixed_point In []: from scipy.optimize import bisect In []: from scipy.optimize import newton \end{lstlisting} \end{small} \end{frame} \begin{frame} \frametitle{Things we have learned} \begin{itemize} \item Solving ODEs \item Finding Roots \begin{itemize} \item Estimating Interval \item Newton Raphson \item Scipy methods \end{itemize} \end{itemize} \end{frame} \end{document}