%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Tutorial slides on Python. % % Author: FOSSEE % Copyright (c) 2009, FOSSEE, IIT Bombay %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \documentclass[14pt,compress]{beamer} %\documentclass[draft]{beamer} %\documentclass[compress,handout]{beamer} %\usepackage{pgfpages} %\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm] % Modified from: generic-ornate-15min-45min.de.tex \mode { \usetheme{Warsaw} \useoutertheme{split} \setbeamercovered{transparent} } \usepackage[english]{babel} \usepackage[latin1]{inputenc} %\usepackage{times} \usepackage[T1]{fontenc} \usepackage{amsmath} % Taken from Fernando's slides. \usepackage{ae,aecompl} \usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet} \definecolor{darkgreen}{rgb}{0,0.5,0} \usepackage{listings} \lstset{language=Python, basicstyle=\ttfamily\bfseries, commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen}, showstringspaces=false, keywordstyle=\color{blue}\bfseries} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Macros \setbeamercolor{emphbar}{bg=blue!20, fg=black} \newcommand{\emphbar}[1] {\begin{beamercolorbox}[rounded=true]{emphbar} {#1} \end{beamercolorbox} } \newcounter{time} \setcounter{time}{0} \newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}} \newcommand{\typ}[1]{\lstinline{#1}} \newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} } %%% This is from Fernando's setup. % \usepackage{color} % \definecolor{orange}{cmyk}{0,0.4,0.8,0.2} % % Use and configure listings package for nicely formatted code % \usepackage{listings} % \lstset{ % language=Python, % basicstyle=\small\ttfamily, % commentstyle=\ttfamily\color{blue}, % stringstyle=\ttfamily\color{orange}, % showstringspaces=false, % breaklines=true, % postbreak = \space\dots % } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Title page \title[Basic Python]{Interpolation, Differentiation and Integration} \author[FOSSEE] {FOSSEE} \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay} \date[] {31, October 2009\\Day 1, Session 5} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo} %\logo{\pgfuseimage{iitmlogo}} %% Delete this, if you do not want the table of contents to pop up at %% the beginning of each subsection: \AtBeginSubsection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection,currentsubsection] \end{frame} } \AtBeginSection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection,currentsubsection] \end{frame} } % If you wish to uncover everything in a step-wise fashion, uncomment % the following command: %\beamerdefaultoverlayspecification{<+->} %\includeonlyframes{current,current1,current2,current3,current4,current5,current6} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DOCUMENT STARTS \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{Outline} \tableofcontents % \pausesections \end{frame} \section{Interpolation} \begin{frame}[fragile] \frametitle{Interpolation} \begin{itemize} \item Let us begin with interpolation \item Let's use the L and T arrays and interpolate this data to obtain data at new points \end{itemize} \begin{lstlisting} In []: L = [] In []: T = [] In []: for line in open('pendulum.txt'): l, t = line.split() L.append(float(l)) T.append(float(t)) In []: L = array(L) In []: T = array(T) \end{lstlisting} \end{frame} %% \begin{frame}[fragile] %% \frametitle{Interpolation \ldots} %% \begin{small} %% \typ{In []: from scipy.interpolate import interp1d} %% \end{small} %% \begin{itemize} %% \item The \typ{interp1d} function returns a function %% \begin{lstlisting} %% In []: f = interp1d(L, T) %% \end{lstlisting} %% \item Functions can be assigned to variables %% \item This function interpolates between known data values to obtain unknown %% \end{itemize} %% \end{frame} %% \begin{frame}[fragile] %% \frametitle{Interpolation \ldots} %% \begin{lstlisting} %% In []: Ln = arange(0.1,0.99,0.005) %% # Interpolating! %% # The new values in range of old data %% In []: plot(L, T, 'o', Ln, f(Ln), '-') %% In []: f = interp1d(L, T, kind='cubic') %% # When kind not specified, it's linear %% # Others are ... %% # 'nearest', 'zero', %% # 'slinear', 'quadratic' %% \end{lstlisting} %% \end{frame} \begin{frame}[fragile] \frametitle{Spline Interpolation} \begin{small} \begin{lstlisting} In []: from scipy.interpolate import splrep In []: from scipy.interpolate import splev \end{lstlisting} \end{small} \begin{itemize} \item Involves two steps \begin{enumerate} \item Find out the spline curve, coefficients \item Evaluate the spline at new points \end{enumerate} \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{\typ{splrep}} To find the B-spline representation \begin{lstlisting} In []: tck = splrep(L, T) \end{lstlisting} Returns \begin{enumerate} \item the vector of knots, \item the B-spline coefficients \item the degree of the spline (default=3) \end{enumerate} \end{frame} \begin{frame}[fragile] \frametitle{\typ{splev}} To Evaluate a B-spline and it's derivatives \begin{lstlisting} In []: Lnew = arange(0.1,1,0.005) In []: Tnew = splev(Lnew, tck) #To obtain derivatives of the spline #use der=1, 2,.. for 1st, 2nd,.. order In []: Tnew = splev(Lnew, tck, der=1) \end{lstlisting} \end{frame} %% \begin{frame}[fragile] %% \frametitle{Interpolation \ldots} %% \begin{itemize} %% \item %% \end{itemize} %% \end{frame} \section{Differentiation} \begin{frame}[fragile] \frametitle{Numerical Differentiation} \begin{itemize} \item Given function $f(x)$ or data points $y=f(x)$ \item We wish to calculate $f^{'}(x)$ at points $x$ \item Taylor series - finite difference approximations \end{itemize} \begin{center} \begin{tabular}{l l} $f(x+h)=f(x)+h.f^{'}(x)$ &Forward \\ $f(x-h)=f(x)-h.f^{'}(x)$ &Backward \end{tabular} \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Forward Difference} \begin{lstlisting} In []: x = linspace(0, 2*pi, 100) In []: y = sin(x) In []: deltax = x[1] - x[0] \end{lstlisting} Obtain the finite forward difference of y \end{frame} \begin{frame}[fragile] \frametitle{Forward Difference \ldots} \begin{lstlisting} In []: fD = (y[1:] - y[:-1]) / deltax In []: plot(x, y, x[:-1], fD) \end{lstlisting} \begin{center} \includegraphics[height=2in, interpolate=true]{data/fwdDiff} \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Example} \begin{itemize} \item Given x, y positions of a particle in \typ{pos.txt} \item Find velocity \& acceleration in x, y directions \end{itemize} \small{ \begin{center} \begin{tabular}{| c | c | c |} \hline $X$ & $Y$ \\ \hline 0. & 0.\\ \hline 0.25 & 0.47775\\ \hline 0.5 & 0.931\\ \hline 0.75 & 1.35975\\ \hline 1. & 1.764\\ \hline 1.25 & 2.14375\\ \hline \vdots & \vdots\\ \hline \end{tabular} \end{center}} \end{frame} \begin{frame}[fragile] \frametitle{Example \ldots} \begin{itemize} \item Read the file \item Obtain an array of x, y \item Obtain velocity and acceleration \item use \typ{deltaT = 0.05} \end{itemize} \begin{lstlisting} In []: X = [] In []: Y = [] In []: for line in open('location.txt'): .... points = line.split() .... X.append(float(points[0])) .... Y.append(float(points[1])) In []: S = array([X, Y]) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Example \ldots} \begin{itemize} \item use \typ{deltaT = 0.05} \end{itemize} \begin{lstlisting} In []: deltaT = 0.05 In []: v = (S[:,1:]-S[:,:-1])/deltaT In []: a = (v[:,1:]-v[:,:-1])/deltaT \end{lstlisting} Try Plotting the position, velocity \& acceleration. \end{frame} \section{Quadrature} \begin{frame}[fragile] \frametitle{Quadrature} \begin{itemize} \item We wish to find area under a curve \item Area under $(sin(x) + x^2)$ in $(0,1)$ \item scipy has functions to do that \end{itemize} \begin{small} \typ{In []: from scipy.integrate import quad} \end{small} \begin{itemize} \item Inputs - function to integrate, limits \end{itemize} \begin{lstlisting} In []: x = 0 In []: quad(sin(x)+x**2, 0, 1) \end{lstlisting} \begin{small} \alert{\typ{error:}} \typ{First argument must be a callable function.} \end{small} \end{frame} \begin{frame}[fragile] \frametitle{Functions - Definition} We have been using them all along. Now let's see how to define them. \begin{lstlisting} In []: def f(x): return sin(x)+x**2 In []: quad(f, 0, 1) \end{lstlisting} \begin{itemize} \item \typ{def} \item name \item arguments \item \typ{return} \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{Functions - Calling them} \begin{lstlisting} In [15]: f() --------------------------------------- \end{lstlisting} \alert{\typ{TypeError:}}\typ{f() takes exactly 1 argument} \typ{(0 given)} \begin{lstlisting} In []: f(0) Out[]: 0.0 In []: f(1) Out[]: 1.8414709848078965 \end{lstlisting} More on Functions later \ldots \end{frame} \begin{frame}[fragile] \frametitle{Quadrature \ldots} \begin{lstlisting} In []: quad(f, 0, 1) \end{lstlisting} Returns the integral and an estimate of the absolute error in the result. \begin{itemize} \item Look at \typ{dblquad} for Double integrals \item Use \typ{tplquad} for Triple integrals \end{itemize} \end{frame} \begin{frame} \frametitle{Things we have learned} \begin{itemize} \item Interpolation \item Differentiation \item Functions \begin{itemize} \item Definition \item Calling \item Default Arguments \item Keyword Arguments \end{itemize} \item Quadrature \end{itemize} \end{frame} \end{document}