\documentclass[12pt]{article} \title{Interactive Plotting} \author{FOSSEE} \begin{document} \date{} \vspace{-1in} \begin{center} \LARGE{Statistics and Least square fit}\\ \large{FOSSEE} \end{center} \section{Statistics} Dictionary \begin{verbatim} In [1]: d = {"Hitchhiker's guide" : 42, ....: "Terminator" : "I'll be back"} #Creation In [2]: d["Hitchhiker's guide"] # Accessing a value with key In [3]: "Hitchhiker's guide" in d #Checking for a key In [4]: d.keys() # Obtaining List of Keys In [5]: d.values() # Obtaining List of Values \end{verbatim} Iterating through List indices \begin{verbatim} In [1]: names = ["Guido","Alex", "Tim"] In [2]: for i, name in enumerate(names): ...: print i, name \end{verbatim} \begin{verbatim} In [1]: score = int(score_str) if score_str != 'AA' else 0 \end{verbatim} Drawing Pie Charts \begin{verbatim} In [1]: pie(science.values(), labels=science.keys()) \end{verbatim} sum() and len() functions \begin{verbatim} In [1]: mean = sum(math_scores) / len(math_scores) \end{verbatim} Numpy Arrays \begin{verbatim} In [1]: a = array([1, 2, 3]) #Creating In [2]: b = array([4, 5, 6]) In [3]: a + b #Sum; Element-wise \end{verbatim} Numpy statistical operations \begin{verbatim} In [1]: mean(math_scores) In [2]: median(math_scores) In [3]: stats.mode(math_scores) In [4]: std(math_scores) \end{verbatim} Generating Van der Monde matrix \begin{verbatim} In [1]: A = vander(L, 2) \end{verbatim} Getting a Least Squares Fit curve \begin{verbatim} In [1]: coef, res, r, s = lstsq(A,TSq) In [2]: Tline = coef[0]*L + coef[1] In [3]: plot(L, Tline) \end{verbatim} \end{document}