From 31e5331f054cc4168c8c676ce04bddd113f9a563 Mon Sep 17 00:00:00 2001 From: Puneeth Chaganti Date: Wed, 4 Nov 2009 22:08:13 +0530 Subject: Moved least square fitting to session 4; removed vander function. --- day1/session4.tex | 97 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 97 insertions(+) (limited to 'day1/session4.tex') diff --git a/day1/session4.tex b/day1/session4.tex index 7981771..c126cbf 100644 --- a/day1/session4.tex +++ b/day1/session4.tex @@ -306,6 +306,102 @@ Out[]: \inctime{15} \end{frame} +\section{Least Squares Fit} +\begin{frame}[fragile] +\frametitle{Least Squares Fit} +\vspace{-0.15in} +\begin{figure} +\includegraphics[width=4in]{data/L-Tsq-Line.png} +\end{figure} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Least Squares Fit} +\vspace{-0.15in} +\begin{figure} +\includegraphics[width=4in]{data/L-Tsq-points.png} +\end{figure} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Least Squares Fit} +\vspace{-0.15in} +\begin{figure} +\includegraphics[width=4in]{data/least-sq-fit.png} +\end{figure} +\end{frame} + +\begin{frame} +\frametitle{Least Square Fit Curve} +\begin{itemize} +\item $T^2$ and $L$ have a linear relationship +\item Hence, Least Square Fit Curve is a line +\item we shall use the \typ{lstsq} function +\end{itemize} +\end{frame} + +\begin{frame}[fragile] +\frametitle{\typ{lstsq}} +\begin{itemize} +\item We need to fit a line through points for the equation $T^2 = m \cdot L+c$ +\item The equation can be re-written as $T^2 = A \cdot p$ +\item where A is + $\begin{bmatrix} + L_1 & 1 \\ + L_2 & 1 \\ + \vdots & \vdots\\ + L_N & 1 \\ + \end{bmatrix}$ + and p is + $\begin{bmatrix} + m\\ + c\\ + \end{bmatrix}$ +\item We need to find $p$ to plot the line +\end{itemize} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Generating $A$} +\begin{lstlisting} +In []: A = array([L, ones_like(L)]) +In []: A = A.T +\end{lstlisting} +%% \begin{itemize} +%% \item A is also called a Van der Monde matrix +%% \item It can also be generated using \typ{vander} +%% \end{itemize} +%% \begin{lstlisting} +%% In []: A = vander(L, 2) +%% \end{lstlisting} +\end{frame} + +\begin{frame}[fragile] +\frametitle{\typ{lstsq} \ldots} +\begin{itemize} +\item Now use the \typ{lstsq} function +\item Along with a lot of things, it returns the least squares solution +\end{itemize} +\begin{lstlisting} +In []: coef, res, r, s = lstsq(A,TSq) +\end{lstlisting} +\end{frame} + +\subsection{Plotting} +\begin{frame}[fragile] +\frametitle{Least Square Fit Line \ldots} +We get the points of the line from \typ{coef} +\begin{lstlisting} +In []: Tline = coef[0]*L + coef[1] +\end{lstlisting} +\begin{itemize} +\item Now plot Tline vs. L, to get the Least squares fit line. +\end{itemize} +\begin{lstlisting} +In []: plot(L, Tline) +\end{lstlisting} +\end{frame} + \section{Solving linear equations} \begin{frame}[fragile] @@ -476,6 +572,7 @@ Use \kwrd{solve()} \item Norms \item Singular Value Decomposition \end{itemize} + \item Least Square Curve fitting \item Solving linear equations \end{itemize} \end{frame} -- cgit