diff options
Diffstat (limited to 'day2')
-rw-r--r-- | day2/session1.tex | 51 |
1 files changed, 19 insertions, 32 deletions
diff --git a/day2/session1.tex b/day2/session1.tex index 812d257..75cfee1 100644 --- a/day2/session1.tex +++ b/day2/session1.tex @@ -170,7 +170,6 @@ array([5, 8, 11, 14]) \item \alert{Note:} \typ{len(arr) != arr.size} in general \item \alert{Note:} By default array operations are performed \alert{elementwise} - \item Indices, slicing: just like lists \end{itemize} \end{frame} @@ -192,8 +191,6 @@ dtype('float64') >>> print x[0], x[-1] 10.0 4.0 \end{lstlisting} - -\inctime{10} \end{frame} \begin{frame}[fragile] @@ -223,10 +220,9 @@ array([10,11,12,-1]) \typ{less (<)}, \typ{greater (>)} etc. \item Trig and other functions: \typ{sin(x), arcsin(x), sinh(x), exp(x), sqrt(x)} etc. - \item \typ{sum(x, axis=0), product(x, axis=0)} - \item \typ{dot(a, bp)} + \item \typ{sum(x, axis=0), product(x, axis=0), dot(a, bp)} \inctime{10} \end{itemize} - \inctime{10} + \end{frame} \subsection{Array Creation \& Slicing, Striding Arrays} @@ -257,6 +253,8 @@ array([[5, 6], [8, 9]]) >>> a[:,2] array([3, 6, 9]) +>>> a[...,2] +array([3, 6, 9]) \end{lstlisting} \end{frame} @@ -293,6 +291,8 @@ array([[ 0.96276665, 0.77174861], \end{lstlisting} \begin{enumerate} \item Convert an RGB image to Grayscale. $ Y = 0.5R + 0.25G + 0.25B $ + \item Scale the image to 50\% + \item Introduce some random noise? \end{enumerate} \inctime{15} \end{frame} @@ -723,7 +723,7 @@ title('triangular head; scale '\ \end{frame} \begin{frame} - \frametitle{Problem set 1.0} + \frametitle{Problem Set} \begin{enumerate} \item Write a function that plots any n-gon given \typ{n}. \item Consider the logistic map, $f(x) = kx(1-x)$, plot it for @@ -731,9 +731,12 @@ title('triangular head; scale '\ \end{enumerate} \end{frame} -\begin{frame} - \frametitle{Problem set 1.1} - \begin{enumerate} +\begin{frame}[fragile] +\frametitle{Problem Set} + \begin{columns} + \column{0.6\textwidth} + \small{ + \begin{enumerate} \item Consider the iteration $x_{n+1} = f(x_n)$ where $f(x) = kx(1-x)$. Plot the successive iterates of this process. \item Plot this using a cobweb plot as follows: @@ -744,28 +747,12 @@ title('triangular head; scale '\ \item Draw line to $(x_i, x_i)$ \item Repeat from 2 for as long as you want \end{enumerate} - \end{enumerate} + \end{enumerate}} + \column{0.35\textwidth} + \hspace*{-0.5in} + \includegraphics[height=1.6in, interpolate=true]{data/cobweb} +\end{columns} +\inctime{20} \end{frame} -\begin{frame} - \frametitle{Problem set 1.2} - \begin{enumerate} - - \item Plot the Koch snowflake. Write a function to generate the - necessary points given the two points constituting a line. - \pause - \begin{enumerate} - \item Split the line into 4 segments. - \item The first and last segments are trivial. - \item To rotate the point you can use complex numbers, - recall that $z e^{j \theta}$ rotates a point $z$ in 2D - by $\theta$. - \item Do this for all line segments till everything is - done. - \end{enumerate} - \item Show rate of convergence for a first and second order finite - difference of sin(x) -\end{enumerate} -\inctime{30} -\end{frame} \end{document} |