summaryrefslogtreecommitdiff
path: root/day1/session6.tex
diff options
context:
space:
mode:
Diffstat (limited to 'day1/session6.tex')
-rw-r--r--day1/session6.tex85
1 files changed, 80 insertions, 5 deletions
diff --git a/day1/session6.tex b/day1/session6.tex
index 1fed5d3..9ee3215 100644
--- a/day1/session6.tex
+++ b/day1/session6.tex
@@ -73,7 +73,7 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
-\title[]{Finding Roots}
+\title[]{ODEs \& Finding Roots}
\author[FOSSEE] {FOSSEE}
@@ -123,6 +123,68 @@
%% % You might wish to add the option [pausesections]
%% \end{frame}
+\section{ODEs}
+
+\begin{frame}[fragile]
+\frametitle{ODE Integration}
+We shall use the simple ODE of a simple pendulum.
+\begin{equation*}
+\ddot{\theta} = -\frac{g}{L}sin(\theta)
+\end{equation*}
+\begin{itemize}
+\item This equation can be written as a system of two first order ODEs
+\end{itemize}
+\begin{align}
+\dot{\theta} &= \omega \\
+\dot{\omega} &= -\frac{g}{L}sin(\theta) \\
+ \text{At}\ t &= 0 : \nonumber \\
+ \theta = \theta_0\quad & \&\quad \omega = 0 \nonumber
+\end{align}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{Solving ODEs using SciPy}
+\begin{itemize}
+\item We use the \typ{odeint} function from scipy to do the integration
+\item Define a function as below
+\end{itemize}
+\begin{lstlisting}
+In []: def pend_int(unknown, t, p):
+ .... theta, omega = unknown
+ .... g, L = p
+ .... f=[omega, -(g/L)*sin(theta)]
+ .... return f
+ ....
+\end{lstlisting}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{Solving ODEs using SciPy \ldots}
+\begin{itemize}
+\item \typ{t} is the time variable \\
+\item \typ{p} has the constants \\
+\item \typ{initial} has the initial values
+\end{itemize}
+\begin{lstlisting}
+In []: t = linspace(0, 10, 101)
+In []: p=(-9.81, 0.2)
+In []: initial = [10*2*pi/360, 0]
+\end{lstlisting}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{Solving ODEs using SciPy \ldots}
+\begin{small}
+ \typ{In []: from scipy.integrate import odeint}
+\end{small}
+\begin{lstlisting}
+In []: pend_sol = odeint(pend_int,
+ initial,t,
+ args=(p,))
+\end{lstlisting}
+\end{frame}
+
+\section{Finding Roots}
\begin{frame}[fragile]
\frametitle{Roots of $f(x)=0$}
@@ -136,8 +198,8 @@
\begin{frame}[fragile]
\frametitle{Initial Estimates}
\begin{itemize}
-\item Find the roots of $cosx-x^2$ between $-\pi/2$ and $\pi/2$
-\item We shall use a crude method to get an initial estimate first
+\item Find roots of $cosx-x^2$ in $(-\pi/2, \pi/2)$
+\item How to get a rough initial estimate?
\end{itemize}
\begin{enumerate}
\item Check for change of signs of $f(x)$ in the given interval
@@ -288,15 +350,28 @@
\begin{frame}[fragile]
\frametitle{Scipy Methods \dots}
-\small{
+\begin{small}
\begin{lstlisting}
In []: from scipy.optimize import fixed_point
In []: from scipy.optimize import bisect
In []: from scipy.optimize import newton
-\end{lstlisting}}
+\end{lstlisting}
+\end{small}
\end{frame}
+\begin{frame}
+ \frametitle{Things we have learned}
+ \begin{itemize}
+ \item Solving ODEs
+ \item Finding Roots
+ \begin{itemize}
+ \item Estimating Interval
+ \item Newton Raphson
+ \item Scipy methods
+ \end{itemize}
+ \end{itemize}
+\end{frame}
\end{document}