%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Tutorial slides on Python. % % Author: FOSSEE % Copyright (c) 2009, FOSSEE, IIT Bombay %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \documentclass[14pt,compress]{beamer} %\documentclass[draft]{beamer} %\documentclass[compress,handout]{beamer} %\usepackage{pgfpages} %\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm] % Modified from: generic-ornate-15min-45min.de.tex \mode { \usetheme{Warsaw} \useoutertheme{infolines} \setbeamercovered{transparent} } \usepackage[english]{babel} \usepackage[latin1]{inputenc} %\usepackage{times} \usepackage[T1]{fontenc} \usepackage{amsmath} % Taken from Fernando's slides. \usepackage{ae,aecompl} \usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet} \definecolor{darkgreen}{rgb}{0,0.5,0} \usepackage{listings} \lstset{language=Python, basicstyle=\ttfamily\bfseries, commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen}, showstringspaces=false, keywordstyle=\color{blue}\bfseries} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Macros \setbeamercolor{emphbar}{bg=blue!20, fg=black} \newcommand{\emphbar}[1] {\begin{beamercolorbox}[rounded=true]{emphbar} {#1} \end{beamercolorbox} } \newcounter{time} \setcounter{time}{0} \newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}} \newcommand{\typ}[1]{\lstinline{#1}} \newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} } %%% This is from Fernando's setup. % \usepackage{color} % \definecolor{orange}{cmyk}{0,0.4,0.8,0.2} % % Use and configure listings package for nicely formatted code % \usepackage{listings} % \lstset{ % language=Python, % basicstyle=\small\ttfamily, % commentstyle=\ttfamily\color{blue}, % stringstyle=\ttfamily\color{orange}, % showstringspaces=false, % breaklines=true, % postbreak = \space\dots % } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Title page \title[Matrices \& Curve Fitting]{Python for Science and Engg: Matrices \& Least Square Fit} \author[FOSSEE] {FOSSEE} \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay} \date[] {14 December, 2009\\Day 1, Session 4} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo} %\logo{\pgfuseimage{iitmlogo}} %% Delete this, if you do not want the table of contents to pop up at %% the beginning of each subsection: \AtBeginSubsection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection,currentsubsection] \end{frame} } \AtBeginSection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection,currentsubsection] \end{frame} } % If you wish to uncover everything in a step-wise fashion, uncomment % the following command: %\beamerdefaultoverlayspecification{<+->} %\includeonlyframes{current,current1,current2,current3,current4,current5,current6} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DOCUMENT STARTS \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{Outline} \tableofcontents % \pausesections \end{frame} \section{Matrices} \begin{frame} \frametitle{Matrices: Introduction} \alert{All matrix operations are done using \kwrd{arrays}} \end{frame} \begin{frame}[fragile] \frametitle{Matrices: Initializing} \begin{lstlisting} In []: c = array([[1,1,2], [2,4,1], [-1,3,7]]) In []: c Out[]: array([[1,1,2], [2,4,1], [-1,3,7]]) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Initializing some special matrices} \begin{small} \begin{lstlisting} In []: ones((3,5)) Out[]: array([[ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.]]) In []: ones_like([1, 2, 3, 4]) Out[]: array([1, 1, 1, 1]) In []: identity(2) Out[]: array([[ 1., 0.], [ 0., 1.]]) \end{lstlisting} Also available \alert{\typ{zeros, zeros_like, empty, empty_like}} \end{small} \end{frame} \begin{frame}[fragile] \frametitle{Accessing elements} \begin{lstlisting} In []: c Out[]: array([[1,1,2], [2,4,1], [-1,3,7]]) In []: c[1][2] Out[]: 1 In []: c[1,2] Out[]: 1 In []: c[1] Out[]: array([2, 4, 1]) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Changing elements} \begin{small} \begin{lstlisting} In []: c[1,1] = -2 In []: c Out[]: array([[ 1, 1, 2], [ 2, -2, 1], [-1, 3, 7]]) In []: c[1] = [0,0,0] In []: c Out[]: array([[ 1, 1, 2], [ 0, 0, 0], [-1, 3, 7]]) \end{lstlisting} \end{small} How to change one \alert{column}? \end{frame} \begin{frame}[fragile] \frametitle{Slicing} \begin{small} \begin{lstlisting} In []: c[:,1] Out[]: array([1, 0, 3]) In []: c[1,:] Out[]: array([0, 0, 0]) In []: c[0:2,:] Out[]: array([[1, 1, 2], [0, 0, 0]]) In []: c[1:3,:] Out[]: array([[ 0, 0, 0], [-1, 3, 7]]) \end{lstlisting} \end{small} \end{frame} \begin{frame}[fragile] \frametitle{Slicing \ldots} \begin{small} \begin{lstlisting} In []: c[:2,:] Out[]: array([[1, 1, 2], [0, 0, 0]]) In []: c[1:,:] Out[]: array([[ 0, 0, 0], [-1, 3, 7]]) In []: c[1:,:2] Out[]: array([[ 0, 0], [-1, 3]]) \end{lstlisting} \end{small} \end{frame} \begin{frame}[fragile] \frametitle{Striding} \begin{small} \begin{lstlisting} In []: c[::2,:] Out[]: array([[ 1, 1, 2], [-1, 3, 7]]) In []: c[:,::2] Out[]: xarray([[ 1, 2], [ 0, 0], [-1, 7]]) In []: c[::2,::2] Out[]: array([[ 1, 2], [-1, 7]]) \end{lstlisting} \end{small} \end{frame} \begin{frame}[fragile] \frametitle{Slicing \& Striding Exercises} \begin{small} \begin{lstlisting} In []: a = imread('lena.png') In []: imshow(a) Out[]: \end{lstlisting} \end{small} \begin{itemize} \item Crop the image to get the top-left quarter \item Crop the image to get only the face \item Resize image to half by dropping alternate pixels \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{Solutions} \begin{small} \begin{lstlisting} In []: imshow(a[:256,:256]) Out[]: In []: imshow(a[200:400,200:400]) Out[]: In []: imshow(a[::2,::2]) Out[]: \end{lstlisting} \end{small} \end{frame} \begin{frame}[fragile] \frametitle{Transpose of a Matrix} \begin{lstlisting} In []: a = array([[ 1, 1, 2, -1], ...: [ 2, 5, -1, -9], ...: [ 2, 1, -1, 3], ...: [ 1, -3, 2, 7]]) In []: a.T Out[]: array([[ 1, 2, 2, 1], [ 1, 5, 1, -3], [ 2, -1, -1, 2], [-1, -9, 3, 7]]) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Sum of all elements} \begin{lstlisting} In []: sum(a) Out[]: 12 \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Matrix Addition} \begin{lstlisting} In []: b = array([[3,2,-1,5], [2,-2,4,9], [-1,0.5,-1,-7], [9,-5,7,3]]) In []: a + b Out[]: array([[ 4. , 3. , 1. , 4. ], [ 4. , 3. , 3. , 0. ], [ 1. , 1.5, -2. , -4. ], [ 10. , -8. , 9. , 10. ]]) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Elementwise Multiplication} \begin{lstlisting} In []: a*b Out[]: array([[ 3. , 2. , -2. , -5. ], [ 4. , -10. , -4. , -81. ], [ -2. , 0.5, 1. , -21. ], [ 9. , 15. , 14. , 21. ]]) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Matrix Multiplication} \begin{lstlisting} In []: dot(a, b) Out[]: array([[ -6. , 6. , -6. , -3. ], [-64. , 38.5, -44. , 35. ], [ 36. , -13.5, 24. , 35. ], [ 58. , -26. , 34. , -15. ]]) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Inverse of a Matrix} \begin{lstlisting} In []: inv(a) \end{lstlisting} \begin{small} \begin{lstlisting} Out[]: array([[-0.5 , 0.55, -0.15, 0.7 ], [ 0.75, -0.5 , 0.5 , -0.75], [ 0.5 , -0.15, -0.05, -0.1 ], [ 0.25, -0.25, 0.25, -0.25]]) \end{lstlisting} \end{small} \end{frame} \begin{frame}[fragile] \frametitle{Determinant} \begin{lstlisting} In []: det(a) Out[]: 80.0 \end{lstlisting} \end{frame} %%use S=array(X,Y) \begin{frame}[fragile] \frametitle{Eigenvalues and Eigen Vectors} \begin{small} \begin{lstlisting} In []: e = array([[3,2,4],[2,0,2],[4,2,3]]) In []: eig(e) Out[]: (array([-1., 8., -1.]), array([[-0.74535599, 0.66666667, -0.1931126 ], [ 0.2981424 , 0.33333333, -0.78664085], [ 0.59628479, 0.66666667, 0.58643303]])) In []: eigvals(e) Out[]: array([-1., 8., -1.]) \end{lstlisting} \end{small} \end{frame} %% \begin{frame}[fragile] %% \frametitle{Computing Norms} %% \begin{lstlisting} %% In []: norm(e) %% Out[]: 8.1240384046359608 %% \end{lstlisting} %% \end{frame} %% \begin{frame}[fragile] %% \frametitle{Singular Value Decomposition} %% \begin{small} %% \begin{lstlisting} %% In []: svd(e) %% Out[]: %% (array( %% [[ -6.66666667e-01, -1.23702565e-16, 7.45355992e-01], %% [ -3.33333333e-01, -8.94427191e-01, -2.98142397e-01], %% [ -6.66666667e-01, 4.47213595e-01, -5.96284794e-01]]), %% array([ 8., 1., 1.]), %% array([[-0.66666667, -0.33333333, -0.66666667], %% [-0. , 0.89442719, -0.4472136 ], %% [-0.74535599, 0.2981424 , 0.59628479]])) %% \end{lstlisting} %% \end{small} %% \inctime{15} %% \end{frame} \section{Least Squares Fit} \begin{frame}[fragile] \frametitle{$L$ vs. $T^2$ - Scatter} \vspace{-0.15in} \begin{figure} \includegraphics[width=4in]{data/L-Tsq-points} \end{figure} \end{frame} \begin{frame}[fragile] \frametitle{$L$ vs. $T^2$ - Line} \vspace{-0.15in} \begin{figure} \includegraphics[width=4in]{data/L-Tsq-Line} \end{figure} \end{frame} \begin{frame}[fragile] \frametitle{$L$ vs. $T^2$ } \frametitle{$L$ vs. $T^2$ - Least Square Fit} \vspace{-0.15in} \begin{figure} \includegraphics[width=4in]{data/least-sq-fit} \end{figure} \end{frame} \begin{frame} \frametitle{Least Square Fit Curve} \begin{itemize} \item $T^2$ and $L$ have a linear relationship \item Hence, Least Square Fit Curve is a line \item we shall use the \typ{lstsq} function \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{\typ{lstsq}} \begin{itemize} \item We need to fit a line through points for the equation $T^2 = m \cdot L+c$ \item In matrix form, the equation can be represented as $T^2 = A \cdot p$, where A is $\begin{bmatrix} L_1 & 1 \\ L_2 & 1 \\ \vdots & \vdots\\ L_N & 1 \\ \end{bmatrix}$ and p is $\begin{bmatrix} m\\ c\\ \end{bmatrix}$ \item We need to find $p$ to plot the line \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{Getting $L$ and $T^2$} If you \alert{closed} IPython after session 2 \begin{lstlisting} In []: l = [] In []: t = [] In []: for line in open('pendulum.txt'): .... point = line.split() .... l.append(float(point[0])) .... t.append(float(point[1])) .... .... \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Getting $L$ and $T^2$ \dots} \begin{lstlisting} In []: l = array(l) In []: t = array(t) \end{lstlisting} \alert{\typ{In []: tsq = t*t}} \end{frame} \begin{frame}[fragile] \frametitle{Generating $A$} \begin{lstlisting} In []: A = array([l, ones_like(l)]) In []: A = A.T \end{lstlisting} %% \begin{itemize} %% \item A is also called a Van der Monde matrix %% \item It can also be generated using \typ{vander} %% \end{itemize} %% \begin{lstlisting} %% In []: A = vander(L, 2) %% \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{\typ{lstsq} \ldots} \begin{itemize} \item Now use the \typ{lstsq} function \item Along with a lot of things, it returns the least squares solution \end{itemize} \begin{lstlisting} In []: result = lstsq(A,tsq) In []: coef = result[0] \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Least Square Fit Line \ldots} We get the points of the line from \typ{coef} \begin{lstlisting} In []: Tline = coef[0]*l + coef[1] \end{lstlisting} \begin{itemize} \item Now plot \typ{Tline} vs. \typ{l}, to get the Least squares fit line. \end{itemize} \begin{lstlisting} In []: plot(l, Tline) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Least Squares Fit} \vspace{-0.15in} \begin{figure} \includegraphics[width=4in]{data/least-sq-fit} \end{figure} \end{frame} \section{Summary} \begin{frame} \frametitle{What did we learn?} \begin{itemize} \item Matrices \begin{itemize} \item Initializing \item Accessing elements \item Slicing and Striding \item Transpose \item Addition \item Multiplication \item Inverse of a matrix \item Determinant \item Eigenvalues and Eigen vector %% \item Norms %% \item Singular Value Decomposition \end{itemize} \item Least Square Curve fitting \end{itemize} \end{frame} \end{document}