%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Tutorial slides on Python. % % Author: FOSSEE % Copyright (c) 2009, FOSSEE, IIT Bombay %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \documentclass[14pt,compress]{beamer} %\documentclass[draft]{beamer} %\documentclass[compress,handout]{beamer} %\usepackage{pgfpages} %\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm] % Modified from: generic-ornate-15min-45min.de.tex \mode { \usetheme{Warsaw} \useoutertheme{split} \setbeamercovered{transparent} } \usepackage[english]{babel} \usepackage[latin1]{inputenc} %\usepackage{times} \usepackage[T1]{fontenc} \usepackage{amsmath} % Taken from Fernando's slides. \usepackage{ae,aecompl} \usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet} \definecolor{darkgreen}{rgb}{0,0.5,0} \usepackage{listings} \lstset{language=Python, basicstyle=\ttfamily\bfseries, commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen}, showstringspaces=false, keywordstyle=\color{blue}\bfseries} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Macros \setbeamercolor{emphbar}{bg=blue!20, fg=black} \newcommand{\emphbar}[1] {\begin{beamercolorbox}[rounded=true]{emphbar} {#1} \end{beamercolorbox} } \newcounter{time} \setcounter{time}{0} \newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}} \newcommand{\typ}[1]{\lstinline{#1}} \newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} } %%% This is from Fernando's setup. % \usepackage{color} % \definecolor{orange}{cmyk}{0,0.4,0.8,0.2} % % Use and configure listings package for nicely formatted code % \usepackage{listings} % \lstset{ % language=Python, % basicstyle=\small\ttfamily, % commentstyle=\ttfamily\color{blue}, % stringstyle=\ttfamily\color{orange}, % showstringspaces=false, % breaklines=true, % postbreak = \space\dots % } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Title page \title[Basic Python]{Matrices, Solution of equations} \author[FOSSEE] {FOSSEE} \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay} \date[] {31, October 2009\\Day 1, Session 4} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo} %\logo{\pgfuseimage{iitmlogo}} %% Delete this, if you do not want the table of contents to pop up at %% the beginning of each subsection: \AtBeginSubsection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection,currentsubsection] \end{frame} } \AtBeginSection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection,currentsubsection] \end{frame} } % If you wish to uncover everything in a step-wise fashion, uncomment % the following command: %\beamerdefaultoverlayspecification{<+->} %\includeonlyframes{current,current1,current2,current3,current4,current5,current6} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DOCUMENT STARTS \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{Outline} \tableofcontents % \pausesections \end{frame} \section{Matrices} \begin{frame} \frametitle{Matrices: Introduction} We looked at the Van der Monde matrix in the previous session,\\ let us now look at matrices in a little more detail. \end{frame} \subsection{Initializing} \begin{frame}[fragile] \frametitle{Matrices: Initializing} \begin{lstlisting} In []: A = ([[5, 2, 4], [-3, 6, 2], [3, -3, 1]]) In []: A Out[]: [[5, 2, 4], [-3, 6, 2], [3, -3, 1]] \end{lstlisting} \end{frame} \subsection{Basic Operations} \begin{frame}[fragile] \frametitle{Transpose of a Matrix} \begin{lstlisting} In []: linalg.transpose(A) Out[]: matrix([[ 5, -3, 3], [ 2, 6, -3], [ 4, 2, 1]]) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Sum of all elements} \begin{lstlisting} In []: linalg.sum(A) Out[]: 17 \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Matrix Addition} \begin{lstlisting} In []: B = matrix([[3,2,-1], [2,-2,4], [-1, 0.5, -1]]) In []: linalg.add(A, B) Out[]: matrix([[ 8. , 4. , 3. ], [-1. , 4. , 6. ], [ 2. , -2.5, 0. ]]) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Matrix Multiplication} \begin{lstlisting} In []: linalg.multiply(A, B) Out[]: matrix([[ 15. , 4. , -4. ], [ -6. , -12. , 8. ], [ -3. , -1.5, -1. ]]) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Inverse of a Matrix} \begin{small} \begin{lstlisting} In []: linalg.inv(A) Out[]: array([[ 0.28571429, -0.33333333, -0.47619048], [ 0.21428571, -0.16666667, -0.52380952], [-0.21428571, 0.5 , 0.85714286]]) \end{lstlisting} \end{small} \end{frame} \begin{frame}[fragile] \frametitle{Determinant} \begin{lstlisting} In []: det(A) Out[]: 42.0 \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Eigen Values and Eigen Matrix} \begin{small} \begin{lstlisting} In []: linalg.eig(A) Out[]: (array([ 7., 2., 3.]), matrix([[-0.57735027, 0.42640143, 0.37139068], [ 0.57735027, 0.63960215, 0.74278135], [-0.57735027, -0.63960215, -0.55708601]])) \end{lstlisting} \end{small} \end{frame} \begin{frame}[fragile] \frametitle{Computing Norms} \begin{lstlisting} In []: linalg.norm(A) Out[]: 10.63014581273465 \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Single Value Decomposition} \begin{small} \begin{lstlisting} In []: linalg.svd(A) Out[]: (matrix([[-0.13391246, -0.94558684, -0.29653495], [ 0.84641267, -0.26476432, 0.46204486], [-0.51541542, -0.18911737, 0.83581192]]), array([ 7.96445022, 7. , 0.75334767]), matrix([[-0.59703387, 0.79815896, 0.08057807], [-0.64299905, -0.41605821, -0.64299905], [-0.47969029, -0.43570384, 0.7616163 ]])) \end{lstlisting} \end{small} \end{frame} \section{Solving linear equations} \begin{frame}[fragile] \frametitle{Solution of equations} Consider, \begin{align*} 3x + 2y - z & = 1 \\ 2x - 2y + 4z & = -2 \\ -x + \frac{1}{2}y -z & = 0 \end{align*} Solution: \begin{align*} x & = 1 \\ y & = -2 \\ z & = -2 \end{align*} \end{frame} \begin{frame}[fragile] \frametitle{Solving using Matrices} Let us now look at how to solve this using \kwrd{matrices} \begin{lstlisting} In []: A = matrix([[3,2,-1], [2,-2,4], [-1, 0.5, -1]]) In []: b = matrix([[1], [-2], [0]]) In []: x = linalg.solve(A, b) In []: Ax = dot(A, x) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Solution:} \begin{lstlisting} In []: x Out[]: array([[ 1.], [-2.], [-2.]]) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Let's check!} \begin{lstlisting} In []: Ax Out[]: matrix([[ 1.00000000e+00], [ -2.00000000e+00], [ 2.22044605e-16]]) \end{lstlisting} \begin{block}{} The last term in the matrix is actually \alert{0}!\\ We can use \kwrd{allclose()} to check. \end{block} \begin{lstlisting} In []: allclose(Ax, b) Out[]: True \end{lstlisting} \end{frame} \subsection{Exercises} \begin{frame}[fragile] \frametitle{Problem 1} \begin{align*} x + y + 2z -w & = 3\\ 2x + 5y - z - 9w & = -3\\ 2x + y -z + 3w & = -11 \\ x - 3y + 2z + 7w & = -5\\ \end{align*} \end{frame} \section{Summary} \begin{frame} \frametitle{Summary} So what did we learn?? \begin{itemize} \item Matrices \begin{itemize} \item Transpose \item Addition \item Multiplication \item Inverse of a matrix \item Determinant \item Eigen values and Eigen matrix \item Norms \item Single Value Decomposition \end{itemize} \item Solving linear equations \end{itemize} \end{frame} \end{document}