%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Tutorial slides on Python. % % Author: FOSSEE % Copyright (c) 2009, FOSSEE, IIT Bombay %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \documentclass[14pt,compress]{beamer} %\documentclass[draft]{beamer} %\documentclass[compress,handout]{beamer} %\usepackage{pgfpages} %\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm] % Modified from: generic-ornate-15min-45min.de.tex \mode { \usetheme{Warsaw} \useoutertheme{infolines} \setbeamercovered{transparent} } \usepackage[english]{babel} \usepackage[latin1]{inputenc} %\usepackage{times} \usepackage[T1]{fontenc} % Taken from Fernando's slides. \usepackage{ae,aecompl} \usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet} \usepackage{amsmath} \definecolor{darkgreen}{rgb}{0,0.5,0} \usepackage{listings} \lstset{language=Python, basicstyle=\ttfamily\bfseries, commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen}, showstringspaces=false, keywordstyle=\color{blue}\bfseries} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Macros \setbeamercolor{emphbar}{bg=blue!20, fg=black} \newcommand{\emphbar}[1] {\begin{beamercolorbox}[rounded=true]{emphbar} {#1} \end{beamercolorbox} } \newcounter{time} \setcounter{time}{0} \newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}} \newcommand{\typ}[1]{\lstinline{#1}} \newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} } %%% This is from Fernando's setup. % \usepackage{color} % \definecolor{orange}{cmyk}{0,0.4,0.8,0.2} % % Use and configure listings package for nicely formatted code % \usepackage{listings} % \lstset{ % language=Python, % basicstyle=\small\ttfamily, % commentstyle=\ttfamily\color{blue}, % stringstyle=\ttfamily\color{orange}, % showstringspaces=false, % breaklines=true, % postbreak = \space\dots % } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Title page \title[Statistics]{Python for Science and Engg: Statistics} \author[FOSSEE] {FOSSEE} \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay} \date[] {31, October 2009\\Day 1, Session 3} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo} %\logo{\pgfuseimage{iitmlogo}} %% Delete this, if you do not want the table of contents to pop up at %% the beginning of each subsection: \AtBeginSubsection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection,currentsubsection] \end{frame} } \AtBeginSection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection,currentsubsection] \end{frame} } \newcommand{\num}{\texttt{numpy}} % If you wish to uncover everything in a step-wise fashion, uncomment % the following command: %\beamerdefaultoverlayspecification{<+->} %\includeonlyframes{current,current1,current2,current3,current4,current5,current6} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DOCUMENT STARTS \begin{document} \begin{frame} \maketitle \end{frame} %% \begin{frame} %% \frametitle{Outline} %% \tableofcontents %% % You might wish to add the option [pausesections] %% \end{frame} \section{Statistics} \begin{frame} \frametitle{More on data processing} \begin{block}{} We have a huge--1m records--data file.\\How do we do \emph{efficient} statistical computations, that is find mean, median, mode, standard deveiation etc; draw pie charts? \end{block} \end{frame} \begin{frame} \frametitle{Statistical Analysis and Parsing} Read the data supplied in \emph{sslc1.txt} and obtain the following statistics: \begin{itemize} \item Draw a pie chart representing the number of students who scored more than 90\% in Science per region. \item Draw a pie chart representing the number of students who scored more than 90\% per subject(All regions combined). \item Print mean, median, mode and standard deviation of math scores for all regions combined. \end{itemize} \end{frame} \begin{frame} \frametitle{Statistical Analysis and Parsing \ldots} Machinery Required - \begin{itemize} \item File reading \item Parsing \item Dictionaries \item NumPy arrays \item Statistical operations \end{itemize} \end{frame} \begin{frame} \frametitle{File reading and parsing} Understanding the structure of sslc1.txt \begin{itemize} \item Each line in the file corresponds to one student's details \item aka record \item Each record consists of several fields separated by a ';' \end{itemize} \end{frame} \begin{frame} \frametitle{File reading and parsing \ldots} Each record consists of: \begin{itemize} \item Region Code \item Roll Number \item Name \item Marks of 5 subjects: English, Hindi, Maths, Science, Social \item Total marks \item Pass/Fail (P/F) \item Withdrawn (W) \end{itemize} \inctime{5} \end{frame} \subsection{Data processing} \begin{frame}[fragile] \frametitle{File reading and parsing \ldots} \begin{lstlisting} for record in open('sslc1.txt'): fields = record.split(';') \end{lstlisting} \end{frame} \subsection{Dictionary} \begin{frame}[fragile] \frametitle{Dictionary: Introduction} \begin{itemize} \item lists index: 0 \ldots n \item dictionaries index using strings \end{itemize} \begin{block}{Example} d = \{ ``Hitchhiker's guide'' : 42, ``Terminator'' : ``I'll be back''\}\\ d[``Terminator''] => ``I'll be back'' \end{block} \end{frame} \begin{frame}[fragile] \frametitle{Dictionary: Introduction} \begin{lstlisting} In [1]: d = {"Hitchhiker's guide" : 42, "Terminator" : "I'll be back"} In [2]: d["Hitchhiker's guide"] Out[2]: 42 In [3]: "Hitchhiker's guide" in d Out[3]: True In [4]: "Guido" in d Out[4]: False \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Dictionary: Introduction} \begin{lstlisting} In [5]: d.keys() Out[5]: ['Terminator', "Hitchhiker's guide"] In [6]: d.values() Out[6]: ["I'll be back", 42] \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{enumerate: Iterating through list indices} \begin{lstlisting} In [1]: names = ["Guido","Alex", "Tim"] In [2]: for i, name in enumerate(names): ...: print i, name ...: 0 Guido 1 Alex 2 Tim \end{lstlisting} \inctime{5} \end{frame} \begin{frame}[fragile] \frametitle{Dictionary: Building parsed data} Let our dictionary be: \begin{lstlisting} science = {} # is an empty dictionary \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Dictionary - Building parsed data} \begin{itemize} \item \emph{Keys} of \emph{science} will be region codes \item Value of a \emph{science} will be the number students who scored more than 90\% in that region \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{Building parsed data \ldots} \begin{lstlisting} from pylab import pie science = {} for record in open('sslc1.txt'): record = record.strip() fields = record.split(';') region_code = fields[0].strip() \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Building parsed data \ldots} \begin{lstlisting} if region_code not in science: science[region_code] = 0 score_str = fields[4].strip() score = int(score_str) if score_str != 'AA' else 0 if score > 90: science[region_code] += 1 \end{lstlisting} \end{frame} \subsection{Visualizing the data} \begin{frame}[fragile] \frametitle{Pie charts} \small \begin{lstlisting} figure(1) pie(science.values(), labels=science.keys()) title('Students scoring 90% and above in science by region') savefig('/tmp/science.png') \end{lstlisting} \begin{columns} \column{5.25\textwidth} \hspace*{1.1in} \includegraphics[height=2in, interpolate=true]{data/science} \column{0.8\textwidth} \end{columns} \inctime{5} \end{frame} \begin{frame}[fragile] \frametitle{Building data for all subjects \ldots} \begin{lstlisting} from pylab import pie from scipy import mean, median, std from scipy import stats scores = [[], [], [], [], []] ninety_percents = [{}, {}, {}, {}, {}] \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Building data for all subjects \ldots} \begin{lstlisting} for record in open('sslc1.txt'): record = record.strip() fields = record.split(';') region_code = fields[0].strip() \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Building data for all subjects \ldots} \small \begin{lstlisting} for i, field in enumerate(fields[3:8]): if region_code not in ninety_percents[i]: ninety_percents[i][region_code] = 0 score_str = field.strip() score = int(score_str) if score_str != 'AA' else 0 scores[i].append(score) if score > 90: ninety_percents[i][region_code] += 1 \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Consolidating data} \begin{lstlisting} subj_total = [] for subject in ninety_percents: subj_total.append(sum( subject.values())) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Pie charts} \begin{lstlisting} figure(2) pie(subj_total, labels=['English', 'Hindi', 'Maths', 'Science', 'Social']) title('Students scoring more than 90% by subject(All regions combined).') savefig('/tmp/all_regions.png') \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Pie charts} \includegraphics[height=3in, interpolate=true]{data/all_regions} \end{frame} \subsection{Obtaining stastics} \begin{frame}[fragile] \frametitle{Obtaining statistics} \begin{lstlisting} math_scores = array(scores[2]) print "Mean: ", mean(math_scores) print "Median: ", median(math_scores) print "Mode: ", stats.mode(math_scores) print "Standard Deviation: ", std(math_scores) \end{lstlisting} \inctime{15} \end{frame} \begin{frame}[fragile] \frametitle{What tools did we use?} \begin{itemize} \item Dictionaries for storing data \item Facilities for drawing pie charts \item NumPy arrays for efficient array manipulations \item Functions for statistical computations - mean, median, mode, standard deviation \end{itemize} \end{frame} \begin{frame} \frametitle{L vs $T^2$ \ldots} Let's go back to the L vs $T^2$ plot \begin{itemize} \item We first look at obtaining $T^2$ from T \item Then, we look at plotting a Least Squares fit \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{Dealing with data whole-sale} \begin{lstlisting} In []: for t in T: ....: TSq.append(t*t) \end{lstlisting} \begin{itemize} \item This is not very efficient \item We are squaring element after element \item We use arrays to make this efficient \end{itemize} \begin{lstlisting} In []: L = array(L) In []: T = array(T) In []: TSq = T*T \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Arrays} \begin{itemize} \item \typ{T} and \typ{L} are now arrays \item arrays are very efficient and powerful \item Very easy to perform element-wise operations \item \typ{+, -, *, /, \%} \item More about arrays later \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{Least Squares Fit} \vspace{-0.15in} \begin{figure} \includegraphics[width=4in]{data/L-Tsq-Line.png} \end{figure} \end{frame} \begin{frame}[fragile] \frametitle{Least Squares Fit} \vspace{-0.15in} \begin{figure} \includegraphics[width=4in]{data/L-Tsq-points.png} \end{figure} \end{frame} \begin{frame}[fragile] \frametitle{Least Squares Fit} \vspace{-0.15in} \begin{figure} \includegraphics[width=4in]{data/least-sq-fit.png} \end{figure} \end{frame} \begin{frame} \frametitle{Least Square Fit Curve} \begin{itemize} \item $T^2$ and $L$ have a linear relationship \item Hence, Least Square Fit Curve is a line \item we shall use the \typ{lstsq} function \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{\typ{lstsq}} \begin{itemize} \item We need to fit a line through points for the equation $T^2 = m \cdot L+c$ \item The equation can be re-written as $T^2 = A \cdot p$ \item where A is $\begin{bmatrix} L_1 & 1 \\ L_2 & 1 \\ \vdots & \vdots\\ L_N & 1 \\ \end{bmatrix}$ and p is $\begin{bmatrix} m\\ c\\ \end{bmatrix}$ \item We need to find $p$ to plot the line \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{Van der Monde Matrix} \begin{itemize} \item A is also called a Van der Monde matrix \item It can be generated using \typ{vander} \end{itemize} Van der Monde matrix of order M \begin{equation*} \begin{bmatrix} l_1^{M-1} & \ldots & l_1 & 1 \\ l_2^{M-1} & \ldots &l_2 & 1 \\ \vdots & \ldots & \vdots & \vdots\\ l_N^{M-1} & \ldots & l_N & 1 \\ \end{bmatrix} \end{equation*} \begin{lstlisting} In []: A = vander(L,2) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{\typ{lstsq} \ldots} \begin{itemize} \item Now use the \typ{lstsq} function \item Along with a lot of things, it returns the least squares solution \end{itemize} \begin{lstlisting} In []: coef, res, r, s = lstsq(A,TSq) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Least Square Fit Line \ldots} We get the points of the line from \typ{coef} \begin{lstlisting} In []: Tline = coef[0]*L + coef[1] \end{lstlisting} \begin{itemize} \item Now plot Tline vs. L, to get the Least squares fit line. \end{itemize} \begin{lstlisting} In []: plot(L, Tline) \end{lstlisting} \end{frame} \end{document}