%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Tutorial slides on Python. % % Author: Prabhu Ramachandran % Copyright (c) 2005-2009, Prabhu Ramachandran %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \documentclass[14pt,compress]{beamer} %\documentclass[draft]{beamer} %\documentclass[compress,handout]{beamer} %\usepackage{pgfpages} %\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm] % Modified from: generic-ornate-15min-45min.de.tex \mode { \usetheme{Warsaw} \useoutertheme{infolines} \setbeamercovered{transparent} } \usepackage[english]{babel} \usepackage[latin1]{inputenc} %\usepackage{times} \usepackage[T1]{fontenc} % Taken from Fernando's slides. \usepackage{ae,aecompl} \usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet} \definecolor{darkgreen}{rgb}{0,0.5,0} \usepackage{listings} \lstset{language=Python, basicstyle=\ttfamily\bfseries, commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen}, showstringspaces=false, keywordstyle=\color{blue}\bfseries} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Macros \setbeamercolor{emphbar}{bg=blue!20, fg=black} \newcommand{\emphbar}[1] {\begin{beamercolorbox}[rounded=true]{emphbar} {#1} \end{beamercolorbox} } \newcounter{time} \setcounter{time}{0} \newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}} \newcommand{\typ}[1]{\texttt{#1}} \newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} } %%% This is from Fernando's setup. % \usepackage{color} % \definecolor{orange}{cmyk}{0,0.4,0.8,0.2} % % Use and configure listings package for nicely formatted code % \usepackage{listings} % \lstset{ % language=Python, % basicstyle=\small\ttfamily, % commentstyle=\ttfamily\color{blue}, % stringstyle=\ttfamily\color{orange}, % showstringspaces=false, % breaklines=true, % postbreak = \space\dots % } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Title page \title[Exercises]{Exercises} \author[FOSSEE] {FOSSEE} \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay} \date[] {7 November, 2009\\Day 1, Session 5} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo} %\logo{\pgfuseimage{iitmlogo}} %% Delete this, if you do not want the table of contents to pop up at %% the beginning of each subsection: \AtBeginSubsection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection,currentsubsection] \end{frame} } % If you wish to uncover everything in a step-wise fashion, uncomment % the following command: %\beamerdefaultoverlayspecification{<+->} %\includeonlyframes{current,current1,current2,current3,current4,current5,current6} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DOCUMENT STARTS \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{Problem 1} \begin{itemize} \item Open file 'pos.txt', it has X and Y Coordinate of a particle under motion \item Plot X vs Y Graph. \item Label both the axes. \item What kind of motion is this? \item Title the graph accordingly. \item Annotate the position where vertical velocity is zero. \end{itemize} \end{frame} \begin{frame} \frametitle{Problem 2} Write a Program that plots a regular n-gon(Let n = 5). \end{frame} \begin{frame}[fragile] \frametitle{Problem 3} Create a sequence of images in which the damped oscillator($e^{x/10}sin(x)$) slowly evolves over time. \begin{columns} \column{0.35\textwidth} \includegraphics[width=1.5in,height=1.5in, interpolate=true]{data/plot2} \column{0.35\textwidth} \includegraphics[width=1.5in,height=1.5in, interpolate=true]{data/plot4} \column{0.35\textwidth} \includegraphics[width=1.5in,height=1.5in, interpolate=true]{data/plot6} \end{columns} \begin{block}{Hint} \small \begin{lstlisting} savefig('plot'+str(i)+'.png') #i is int variable \end{lstlisting} \end{block} \end{frame} \begin{frame} \frametitle{Problem 4} Legendre polynomials $P_n(x)$ are defined by the following recurrence relation \center{$(n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0$}\\ with $P_0(x) = 1$, $P_1(x) = x$ and $P_2(x) = (3x^2 - 1)/2$. Compute the next three Legendre polynomials and plot all 6 over the interval [-1,1]. \end{frame} \end{document} %% \begin{frame}[fragile] %% \frametitle{Problem Set 5} %% \begin{columns} %% \column{0.6\textwidth} %% \small{ %% \begin{itemize} %% \item[3] Consider the iteration $x_{n+1} = f(x_n)$ where $f(x) = kx(1-x)$. Plot the successive iterates of this process as explained below. %% \end{itemize}} %% \column{0.35\textwidth} %% \hspace*{-0.5in} %% \includegraphics[height=1.6in, interpolate=true]{data/cobweb} %% \end{columns} %% \end{frame} %% \begin{frame} %% \frametitle{Problem Set 5.3} %% Plot the cobweb plot as follows: %% \begin{enumerate} %% \item Start at $(x_0, 0)$ ($\implies$ i=0) %% \item Draw a line to $(x_i, f(x_i))$ %% \item Set $x_{i+1} = f(x_i)$ %% \item Draw a line to $(x_{i+1}, x_{i+1})$ %% \item $(i\implies i+1)$ %% \item Repeat from 2 for as long as you want %% \end{enumerate} %% \inctime{20} %% \end{frame}