\documentclass[12pt]{article} \title{Matrices and Solution of Equations} \author{FOSSEE} \begin{document} \date{} \vspace{-1in} \begin{center} \LARGE{Interpolation, Differentiation and Integration}\\ \large{FOSSEE} \end{center} \section{} Loading a data file \begin{verbatim} In [2]: x, y = loadtxt('points.txt', unpack = True) #load data file directly into Arrays. \end{verbatim} \section{} Interploate \begin{verbatim} In []: from scipy.interpolate import splrep In []: tck = splrep(x,y) #get spline curve representation for x,y. In []: from scipy.interpolate import splev #To evaluate spline and it's derivatives. In []: Xnew = arange(0.01,3,0.02) #missing set of points In []: Ynew = splev(Xnew, tck) #Value of function at Xnew In []: plot(Xnew, Ynew) \end{verbatim} \section{Differentiation} Taylor series - finite difference approximations $f(x+h)=f(x)+hf^{'}(x)$ Forward \begin{verbatim} In []: x = linspace(0, 2*pi, 100) In []: y = sin(x) In []: deltax = x[1] - x[0] In []: fD = (y[1:] - y[:-1]) / deltax #fD is the required forward difference \end{verbatim} \section{Quadrature} $\int_0^1(sin(x) + x^2)$ In []: def f(x): return sin(x)+x**2 In []: from scipy.integrate import quad In []: quad(f, 0, 1) \end{document}