From 67677e1a69087ca9ca1c4291e92bcac7e0666024 Mon Sep 17 00:00:00 2001 From: Shantanu Date: Thu, 19 Nov 2009 22:26:00 +0530 Subject: Modified cheat sheet of session 1 and session 6 day 1. --- day1/cheatsheet6.tex | 114 ++++++++++++++++++++++++++++++++++++++++++--------- 1 file changed, 94 insertions(+), 20 deletions(-) (limited to 'day1/cheatsheet6.tex') diff --git a/day1/cheatsheet6.tex b/day1/cheatsheet6.tex index 2e9de97..5a9f652 100755 --- a/day1/cheatsheet6.tex +++ b/day1/cheatsheet6.tex @@ -1,6 +1,20 @@ \documentclass[12pt]{article} \title{Solving Equations \& ODEs} \author{FOSSEE} +\usepackage{listings} +\lstset{language=Python, + basicstyle=\ttfamily, +commentstyle=\itshape\bfseries, +showstringspaces=false, +} +\newcommand{\typ}[1]{\lstinline{#1}} +\usepackage[english]{babel} +\usepackage[latin1]{inputenc} +\usepackage{times} +\usepackage[T1]{fontenc} +\usepackage{ae,aecompl} +\usepackage{mathpazo,courier,euler} +\usepackage[scaled=.95]{helvet} \begin{document} \date{} \vspace{-1in} @@ -9,27 +23,87 @@ \large{FOSSEE} \end{center} \section{Solving linear equations} -\begin{verbatim} - In []: A = array([[3,2,-1], - [2,-2,4], - [-1, 0.5, -1]]) - In []: b = array([[1], [-2], [0]]) - In []: x = solve(A, b) - In []: Ax = dot(A,x) - In []: allclose(Ax, b) - Out[]: True -\end{verbatim} +Condier following sets of equations:\\ + \begin{align*} + 3x + 2y - z & = 1 \\ + 2x - 2y + 4z & = -2 \\ + -x + $\frac{1}{2}$y -z & = 0 + \end{align*}\\ +The matrix representation is:\\ +\begin{center} +$A*x = B$ +\end{center} +Where A is coefficient matrix(in this case 3x3)\\ +B is constant matrix(1x3)\\ +x is the required solution.\\ +\begin{lstlisting} +In []: A = array([[3,2,-1], [2,-2,4], [-1, 0.5, -1]]) +In []: B = array([[1], [-2], [0]]) +In []: x = solve(A, B) +\end{lstlisting} +Solve the equation $A x = B$ for $x$.\\ +To check whether solution is correct try this: +\begin{lstlisting} +In []: Ax = dot(A,x) #Matrix multiplication of A and x(LHS) +In []: allclose(Ax, B) +Out[]: True +\end{lstlisting} +\typ{allclose} Returns \typ{True} if two arrays(in above case Ax and B) are element-wise equal within a tolerance. +\newpage \section{Finding roots} -\begin{verbatim} - In []: coeffs = [1, 6, 13] - In []: roots(coeffs) -\end{verbatim} -Finding the roots of a function -\begin{verbatim} -In []: fsolve(sin(x)+cos(x)**2, 0) -\end{verbatim} +\subsection{Polynomials} +\begin{center} + $x^2+6x+13=0$ +\end{center} +to find roots, pylab provides \typ{roots} function. +\begin{lstlisting} +In []: coeffs = [1, 6, 13] #list of all coefficients +In []: roots(coeffs) +\end{lstlisting} +\subsection{functions} +Functions can be defined and used by following syntax: +\begin{lstlisting} +def func_name(arg1, arg2): + #function code + return ret_value +\end{lstlisting} +A simple example can be +\begin{lstlisting} +def expression(x): + y = x*sin(x) + return y +\end{lstlisting} +Above function when called with a argument, will return $xsin(x)$ value for that argument. +\begin{lstlisting} +In [95]: expression(pi/2) +Out[95]: 1.5707963267948966 + +In [96]: expression(pi/3) +Out[96]: 0.90689968211710881 +\end{lstlisting} +\subsection{Roots of non-linear eqations} +For Finding the roots of a non linear equation(defined as $f(x)=0$), around a starting estimate we use \typ{fsolve}:\\ +\typ{In []: from scipy.optimize import fsolve}\\ +\typ{fsolve} is not part of \typ{pylab}, instead it is part of \textbf{optimize} package of \textbf{scipy}, and hence we \textbf{import} it.\\ +%\typ{fsolve} takes first argument as name of function, which evaluates $f(x)$, whose roots one wants to find. And second argument is starting estimate, around which roots are found. +For illustration, we want to find roots of equation: +\begin{center} + $f(x)=sin(x)+cos(x)^2$ +\end{center} +So just like we did above, we define a function: +\begin{lstlisting} +In []: def f(x): + ....: return sin(x)+cos(x)**2 + ....: +\end{lstlisting} +Now to find roots of this non linear equation, around a initial estimate value, say 0, we use \typ{fsolve} in following way: +\begin{lstlisting} +In []: fsolve(f, 0) #arguments are function name and estimate +Out[]: -0.66623943249251527 +\end{lstlisting} + \section{ODE} -\begin{verbatim} +\begin{lstlisting} In []: def epid(y, t): .... k, L = 0.00003, 25000 .... return k*y*(L-y) @@ -40,5 +114,5 @@ In []: fsolve(sin(x)+cos(x)**2, 0) In []: y = odeint(epid, 250, t) In []: plot(t, y) -\end{verbatim} +\end{lstlisting} \end{document} -- cgit