From 163eb47568e337cfaf6260f3e9e97badf2467609 Mon Sep 17 00:00:00 2001
From: Puneeth Chaganti
Date: Mon, 12 Oct 2009 11:56:07 +0530
Subject: Changing authors, etc. Changes at BPRIM.

---
 day2/session1.tex | 190 ++++++++++++++++++++++++++++++------------------------
 day2/session2.tex |  56 +++++++---------
 day2/session3.tex |  30 +++++++--
 day2/tda.tex      |   6 +-
 4 files changed, 153 insertions(+), 129 deletions(-)

diff --git a/day2/session1.tex b/day2/session1.tex
index ae51e72..5ba1c0d 100644
--- a/day2/session1.tex
+++ b/day2/session1.tex
@@ -72,9 +72,9 @@
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 % Title page
-\title[]{Matrices and Arrays\\ \& \\2D Plotting}
+\title[]{Arrays\\ \& \\2D Plotting}
 
-\author[FOSSEE Team] {Asokan Pichai\\Prabhu Ramachandran}
+\author[FOSSEE Team] {FOSSEE}
 
 \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
 \date[] {11, October 2009}
@@ -125,12 +125,12 @@
   % You might wish to add the option [pausesections]
 \end{frame}
 
-\section{Matrices and Arrays}
+\section{Arrays}
 
 \subsection{Basic \typ{numpy}}
 
 \begin{frame}
-  \frametitle{The \num module}
+  \frametitle{The \num\  module}
   \begin{itemize}
       \item Why?
   \item What:
@@ -145,9 +145,9 @@
   \frametitle{Examples of \num}
 \begin{lstlisting}
 # Simple array math example
->>> import numpy as np
->>> a = np.array([1,2,3,4])
->>> b = np.arange(2,6)
+>>> from numpy import *
+>>> a = array([1,2,3,4])
+>>> b = arange(2,6)
 >>> b
 array([2,3,4,5])
 >>> a*2 + b + 1 # Basic math!
@@ -159,42 +159,28 @@ array([5, 8, 11, 14])
   \frametitle{Examples of \num}
 \begin{lstlisting}
 # Pi and e are defined.
->>> x = np.linspace(0.0, 10.0, 1000)
->>> x *= 2*np.pi/10 # inplace.
+>>> x = linspace(0.0, 10.0, 1000)
+>>> x *= 2*pi/10 # inplace.
 # apply functions to array.
->>> y = np.sin(x)
->>> z = np.exp(y)
+>>> y = sin(x)
+>>> z = exp(y)
 \end{lstlisting}
 \inctime{5}
 \end{frame}
 
-\begin{frame}
-  \frametitle{Basic concepts}
-  \begin{itemize}
-  \item fixed size (\typ{arr.size});
-  \item Same type (\typ{arr.dtype}) of data
-  \item arbitrary dimensionality
-  \item \typ{arr.shape}: size in each dimension
-  \item \alert{Note:} \typ{len(arr) != arr.size} in general
-  \item \alert{Note:} By default array operations are performed
-    \alert{elementwise}
-  \end{itemize}
-\end{frame}
-
-
 \begin{frame}[fragile]
   \frametitle{More examples of \num}
 \vspace*{-8pt}
 \begin{lstlisting}
->>> x = np.array([1., 2, 3, 4])
->>> np.size(x)
+>>> x = array([1., 2, 3, 4])
+>>> size(x)
 4
 >>> x.dtype # What is a.dtype?
 dtype('float64')
 >>> x.shape
 (4,)
->>> print np.rank(x), x.itemsize
-1 8
+>>> print x.itemsize
+8
 >>> x[0] = 10
 >>> print x[0], x[-1]
 10.0 4.0
@@ -204,16 +190,16 @@ dtype('float64')
 \begin{frame}[fragile]
   \frametitle{Multi-dimensional arrays}
 \begin{lstlisting}
->>> a = np.array([[ 0, 1, 2, 3],
+>>> a = array([[ 0, 1, 2, 3],
 ...            [10,11,12,13]])
 >>> a.shape # (rows, columns)
 (2, 4)
+>>> a.shape=4,2
 # Accessing and setting values
+>>> a[1][3] 
 >>> a[1,3] 
-13
 >>> a[1,3] = -1
 >>> a[1] # The second row
-array([10,11,12,-1])
 \end{lstlisting}
 \end{frame}
 
@@ -222,15 +208,15 @@ array([10,11,12,-1])
   \begin{itemize}
   \item Basic \alert{elementwise} math (given two arrays \typ{a, b}):
       \typ{+, -, *, /, \%}
-  \item Inplace operators: \typ{a += b}, or \typ{np.add(a, b, a)} etc. 
-  \item \typ{np.sum(x, axis=0)}, 
-        \typ{np.product(x, axis=0)},
-        \typ{np.dot(a, bp)}   
+  \item Inplace operators: \typ{a += b}
+  \item \typ{sum(x, axis=0)}, 
+        \typ{product(x, axis=0)},
+        \typ{dot(a, bp)}   
   \end{itemize}
 \begin{lstlisting}
->>> b=np.array([[0,2,4,2],[1,2,3,4]])
->>> np.add(a,b,a)
->>> np.sum(x,axis=1)
+>>> x = array([[0,2,4,2],[1,2,3,4]])
+>>> sum(x)
+>>> sum(x,axis=1)
 \end{lstlisting}
 \end{frame}
 
@@ -239,50 +225,65 @@ array([10,11,12,-1])
   \begin{itemize}
   \item Logical operations: \typ{==}, \typ{!=},
     \typ{<}, \typ{>} etc.
-  \item Trig and other functions: \typ{np.sin(x),}
-        \typ{np.arcsin(x), np.sinh(x),}
-      \typ{np.exp(x), np.sqrt(x)} etc.
+  \item Trig and other functions: \typ{sin(x),}
+        \typ{arcsin(x), sinh(x),}
+      \typ{exp(x), sqrt(x)} etc.
   \end{itemize}
 \begin{lstlisting}
 >>> a<4, a!=3
->>> np.sqrt(a)
+>>> sqrt(a)
 \end{lstlisting}
 \inctime{10}
 \end{frame}
 
+\begin{frame}
+  \frametitle{Summary of Concepts}
+  \begin{itemize}
+  \item fixed size (\typ{arr.size});
+  \item Same type (\typ{arr.dtype}) of data
+  \item arbitrary dimensionality
+  \item \typ{arr.shape}: size in each dimension
+  \item \alert{Note:} \typ{len(arr) != arr.size} in general
+  \item \alert{Note:} By default array operations are performed
+    \alert{elementwise}
+  \end{itemize}
+\end{frame}
+
 \subsection{Array Creation \& Slicing, Striding Arrays}
 
 \begin{frame}[fragile]
   \frametitle{Array creation functions}
   \begin{itemize}
-    \item \typ{np.array(object,dtype=None,...)}
+    \item \typ{array?} \alert{\#Doc string reading}
+    \item \typ{array(object,dtype=None,...)}
     \begin{lstlisting}
->>> np.array([2,3,4])  
+>>> array([2,3,4])  
 array([2, 3, 4])
     \end{lstlisting}
-    \item \typ{np.linspace(start,stop,num)}
+    \item \typ{linspace(start,stop,num)}
     \begin{lstlisting}
->>> np.linspace(0, 2, 4)   
+>>> linspace(0, 2, 4)   
 array([0.,0.6666667,1.3333333,2.])
     \end{lstlisting}
-    \item Also try \typ{np.arange}
+    \item \typ{arange?}
+      \alert{\# float version of range}
   \end{itemize}
 \end{frame}
 
 \begin{frame}[fragile]
   \frametitle{Array creation functions cont.}
   \begin{itemize}  
-  \item \typ{np.ones(shape, dtype=None, ...)}  
+  \item \typ{ones(shape, dtype=None, ...)}  
   \begin{lstlisting} 
->>>np.ones((2,2))
+>>> ones((2,2))
 array([[ 1.,  1.],
      [ 1.,  1.]])
   \end{lstlisting}  
-  \item \typ{np.identity(n)} 
-  \item \typ{np.ones\_like(x)}  
+  \item \typ{identity(n)} 
+  \item \typ{ones\_like(x)}  
   \begin{lstlisting} 
->>>a = np.array([[1,2,3],[4,5,6]])
->>>np.ones_like(a)
+>>> a = array([[1,2,3],[4,5,6]])
+>>> ones_like(a)
 array([[1, 1, 1],
        [1, 1, 1]])
   \end{lstlisting}
@@ -293,7 +294,7 @@ array([[1, 1, 1],
 \begin{frame}[fragile]
   \frametitle{Slicing arrays}
 \begin{lstlisting}
->>> a = np.array([[1,2,3], [4,5,6], 
+>>> a = array([[1,2,3], [4,5,6], 
                [7,8,9]])
 >>> a[0,1:3]
 array([2, 3])
@@ -302,8 +303,6 @@ array([[5, 6],
        [8, 9]])
 >>> a[:,2]
 array([3, 6, 9])
->>> a[...,2]
-array([3, 6, 9])
 \end{lstlisting}
 \end{frame}
 
@@ -321,21 +320,41 @@ array([[1, 3],
 \begin{frame}[fragile]
 \frametitle{Random Numbers}
 \begin{lstlisting}
->>> np.random.rand(3,2)
+>>> random.random()
+0.94134734326214331
+>>> random.random(2)
+array([ 0.73955352,  0.49463645])
+>>> random.random(3,2)
 array([[ 0.96276665,  0.77174861],
        [ 0.35138557,  0.61462271],
        [ 0.16789255,  0.43848811]])
->>> np.random.randint(1,100)
-42
 \end{lstlisting}
 \inctime{15}
 \end{frame}
 
 \begin{frame}[fragile]
-  \frametitle{Problem Set}
+  \frametitle{Problem}
+  Finite difference
+  \begin{equation*}
+  \frac{sin(x+h)-sin(x)}{h}
+  \end{equation*}
+  \begin{lstlisting}
+  >>> x = linspace(0,2*pi,100)
+  >>> y = sin(x)
+  >>> deltax = x[1]-x[0]
+  \end{lstlisting}
+  \pause
+    \begin{enumerate}
+      \item Given this, get the finite difference of sin in the range 0 to 2*pi
+    \end{enumerate}
+\end{frame}
+
+
+\begin{frame}[fragile]
+  \frametitle{Advanced Problem}
   \begin{lstlisting}
     >>> from scipy import misc
-    >>> A=misc.imread(name)
+    >>> A=misc.imread('filename')
     >>> misc.imshow(A)
   \end{lstlisting}
     \begin{enumerate}
@@ -355,7 +374,7 @@ array([[ 0.96276665,  0.77174861],
 
 \begin{frame}
     {IPython's \typ{pylab} mode}
-\begin{block}{Immediate use:}
+\begin{block}{Immediate use -}
  \typ{\$ ipython -pylab}
 \end{block}
 \begin{itemize}
@@ -379,7 +398,7 @@ array([[ 0.96276665,  0.77174861],
 >>> savefig('/tmp/test.png')
 \end{lstlisting}
 \begin{itemize}
-  \item Also: PDF, PS, EPS, SVG, PDF
+  \item Also: PS, EPS, SVG, PDF
 \end{itemize}
 \inctime{5}
 \end{frame}
@@ -412,11 +431,6 @@ array([[ 0.96276665,  0.77174861],
 >>> xlabel('$\omega$')
 >>> title(r"$f(\omega)=e^{-\omega^2}
             cos({\omega^2})$")
->>> annotate('maxima',xy=(0, 1), 
-             xytext=(1, 0.8), 
-             arrowprops=dict(
-             facecolor='black', 
-             shrink=0.05))
 \end{lstlisting}
     
 \end{frame}
@@ -424,7 +438,7 @@ array([[ 0.96276665,  0.77174861],
 \begin{frame}[fragile]
   \frametitle{Legends}
 \begin{lstlisting}
->>> x = linspace(0, 2*np.pi, 1000)
+>>> x = linspace(0, 2*pi, 1000)
 >>> plot(x, cos(5*x), 'r--', 
          label='cosine')
 >>> plot(x, sin(5*x), 'g--', 
@@ -773,11 +787,11 @@ title('triangular head; scale '\
 
 \begin{frame}
   \frametitle{Problem Set}
-  \begin{enumerate}
-      \item Write a function that plots any regular n-gon given \typ{n}.
-      \item Consider the logistic map, $f(x) = kx(1-x)$, plot it for
+  \begin{itemize}
+      \item[1] Write a function that plots any regular n-gon given \typ{n}.
+      \item[2] Consider the logistic map, $f(x) = kx(1-x)$, plot it for
           $k=2.5, 3.5$ and $4$ in the same plot.
-\end{enumerate}
+\end{itemize}
 \end{frame}
 
 \begin{frame}[fragile] 
@@ -785,23 +799,29 @@ title('triangular head; scale '\
   \begin{columns}
     \column{0.6\textwidth}
     \small{
-    \begin{enumerate}
-      \item Consider the iteration $x_{n+1} = f(x_n)$ where $f(x) = kx(1-x)$.  Plot the successive iterates of this process.
-      \item Plot this using a cobweb plot as follows:
-          \begin{enumerate}
-              \item Start at $(x_0, 0)$
-              \item Draw line to $(x_i, f(x_i))$; 
-              \item Set $x_i = f(x_i)$
-              \item Draw line to $(x_i, x_i)$
-              \item Repeat from 2 for as long as you want 
-          \end{enumerate}
-    \end{enumerate}}
+    \begin{itemize}
+      \item[3] Consider the iteration $x_{n+1} = f(x_n)$ where $f(x) = kx(1-x)$.  Plot the successive iterates of this process as explained below. 
+    \end{itemize}}
     \column{0.35\textwidth}
     \hspace*{-0.5in}
   \includegraphics[height=1.6in, interpolate=true]{data/cobweb}  
 \end{columns}
+\end{frame}
+
+\begin{frame}
+  
+  Plot the cobweb plot as follows:
+  \begin{enumerate}
+    \item Start at $(x_0, 0)$ ($\implies$ i=0)
+    \item Draw a line to $(x_i, f(x_i))$
+    \item Set $x_{i+1} = f(x_i)$
+    \item Draw a line to $(x_{i+1}, x_{i+1})$
+    \item $(i\implies i+1)$ 
+    \item Repeat from 2 for as long as you want 
+  \end{enumerate}
 \inctime{20}
 \end{frame}
+
 \begin{frame}{Summary}
   \begin{itemize}
   \item Basics of Numpy.
diff --git a/day2/session2.tex b/day2/session2.tex
index 8b390cf..2519057 100644
--- a/day2/session2.tex
+++ b/day2/session2.tex
@@ -75,7 +75,7 @@
 % Title page
 \title[]{Numerical Computing with Numpy \& Scipy}
 
-\author[FOSSEE Team] {Asokan Pichai\\Prabhu Ramachandran}
+\author[FOSSEE Team] {FOSSEE}
 
 \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
 \date[] {11, October 2009}
@@ -121,11 +121,11 @@
 \begin{frame}[fragile]
   \frametitle{Broadcasting}
   \begin{lstlisting}
-    >>> a = np.arange(4)
-    >>> b = np.arange(5)
+    >>> a = arange(4)
+    >>> b = arange(5)
     >>> a+b #Does this work?
     >>> a+3
-    >>> c=np.array([3])
+    >>> c = array([3])
     >>> a+c #Works!
     >>> b+c #But how?
     >>> a.shape, b.shape, c.shape
@@ -141,29 +141,21 @@
     \column{0.65\textwidth}
     \hspace*{-1.5in}
     \begin{lstlisting}
-      >>> a = np.arange(4)
+      >>> a = arange(4)
       >>> a+3
       array([3, 4, 5, 6])
     \end{lstlisting}
     \column{0.35\textwidth}
     \includegraphics[height=0.7in, interpolate=true]{data/broadcast_scalar}
   \end{columns}
-  \begin{itemize}
-    \item Allows functions to take inputs that are not of the same shape
-    \item 2 rules -
-      \begin{enumerate}
-      \item 1 is (repeatedly) prepended to shapes of smaller arrays
-      \item Size 1 in a dimension changed to Largest size in that dimension
-      \end{enumerate}
-  \end{itemize}
 \end{frame}
 
 \begin{frame}[fragile]
   \frametitle{Broadcasting in 3D}
     \begin{lstlisting}
-      >>> x = np.ones((3, 5))
-      >>> y = np.ones(8)
-      >>> (x[..., None] + y).shape
+      >>> x = ones((3, 5, 1))
+      >>> y = ones(8)
+      >>> (x + y).shape
       (3, 5, 8)
     \end{lstlisting}
     \begin{figure}
@@ -177,7 +169,7 @@
   \frametitle{Copies \& Views}
   \vspace{-0.1in}
   \begin{lstlisting}
-    >>> a = np.arange(1,9); a.shape=3,3
+    >>> a = arange(1,9); a.shape=3,3
     >>> b = a
     >>> b is a
     >>> b[0,0]=0; print a
@@ -211,12 +203,10 @@
 \begin{frame}[fragile]
   \frametitle{Copies contd \ldots}
   \begin{lstlisting}
-    >>> b = a[np.array([0,1,2])]
-    array([[1, 2, 3],
-           [4, 5, 6],
-           [7, 8, 9]])
+    >>> a = arange(1, 10, 2)
+    >>> b = a[array([0,2,3])]
     >>> b.flags.owndata
-    >>> abool=np.greater(a,2)
+    >>> abool=a>5
     >>> c = a[abool]
     >>> c.flags.owndata
   \end{lstlisting}
@@ -326,7 +316,7 @@
   Calculate the area under $(sin(x) + x^2)$ in the range $(0,1)$
   \begin{lstlisting}
     >>> def f(x):
-            return np.sin(x)+x**2
+            return sin(x)+x**2
     >>> integrate.quad(f, 0, 1)
   \end{lstlisting}
 \end{frame}
@@ -340,8 +330,8 @@
   \end{align*}
   \begin{lstlisting}
 >>> def dx_dt(x,t):
-        return -np.exp(-t)*x**2
->>> t = np.linspace(0,2,100)
+        return -exp(-t)*x**2
+>>> t = linspace(0,2,100)
 >>> x = integrate.odeint(dx_dt, 2, t)
 >>> plt.plot(x,t)
   \end{lstlisting}
@@ -354,14 +344,14 @@
   \begin{lstlisting}
 >>> from scipy import interpolate
 >>> interpolate.interp1d?
->>> x = np.arange(0,2*np.pi,np.pi/4)
->>> y = np.sin(x)
+>>> x = arange(0,2*pi,pi/4)
+>>> y = sin(x)
 >>> fl = interpolate.interp1d(
             x,y,kind='linear')
 >>> fc = interpolate.interp1d(
              x,y,kind='cubic')
->>> fl(np.pi/3)
->>> fc(np.pi/3)
+>>> fl(pi/3)
+>>> fc(pi/3)
   \end{lstlisting}
 \end{frame}
 
@@ -370,7 +360,7 @@
   Plot the Cubic Spline of $sin(x)$
   \begin{lstlisting}
 >>> tck = interpolate.splrep(x,y)
->>> xs = np.arange(0,2*np.pi,np.pi/50)
+>>> xs = arange(0,2*pi,pi/50)
 >>> ys = interpolate.splev(X,tck,der=0)
 >>> plt.plot(x,y,'o',x,y,xs,ys)
 >>> plt.show()
@@ -383,15 +373,12 @@
   \frametitle{Signal \& Image Processing}
     \begin{itemize}
      \item Convolution
-     \item B-splines
      \item Filtering
      \item Filter design
      \item IIR filter design
      \item Linear Systems
-     \item LTI Reresentations
-     \item Waveforms
+     \item LTI Representations
      \item Window functions
-     \item Wavelets
     \end{itemize}
 \end{frame}
 
@@ -409,6 +396,7 @@
   \begin{lstlisting}
 >>> b = ndimage.zoom(A,0.5)
 >>> imshow(b)
+>>> b = ndimage.zoom(A,2)
   \end{lstlisting}
     \inctime{5}
 \end{frame}
diff --git a/day2/session3.tex b/day2/session3.tex
index b4d30d3..d262ab5 100644
--- a/day2/session3.tex
+++ b/day2/session3.tex
@@ -97,12 +97,12 @@
 % Title page
 \title[]{3D data Visualization}
 
-\author[FOSSEE Team] {Asokan Pichai\\Prabhu Ramachandran}
+\author[FOSSEE Team] {FOSSEE}
 
 \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
-\date[] {11, October 2009}
-\date[] % (optional)
-}
+\date[]{11, October 2009}
+%\date[] % (optional)
+
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
 %\pgfdeclareimage[height=0.75cm]{iitblogo}{iitblogo}
@@ -111,8 +111,7 @@
 \AtBeginSection[]
 {
   \begin{frame}<beamer>
-    \frametitle{Outline}
-      \Large
+    \frametitle{Outline}      
     \tableofcontents[currentsection,currentsubsection]
   \end{frame}
 }
@@ -144,7 +143,6 @@
 
 \begin{frame}
   \frametitle{Outline}
-  \Large
   \tableofcontents
   % You might wish to add the option [pausesections]
 \end{frame}
@@ -476,6 +474,24 @@ x, y, z = mgrid[-50:50:20j,-50:50:20j,
                 -10:60:20j]
   \end{lstlisting}
 \inctime{20}
+
+\end{frame}
+\begin{frame}[fragile]
+    \frametitle{Solution}
+  \begin{lstlisting}
+def lorenz(x,y,z,s=10.,r=28.,b=8./3.):
+    u = s*(y-x)
+    v = r*x-y-x*z
+    w = x*y-b*z
+    return u,v,w
+x,y,z = mgrid [-50:50:20j,-50:50:20j,
+                    -10:60:20j ]
+u,v,w = lorenz( x , y , z )
+# Your plot here
+#
+mlab.show()
+
+  \end{lstlisting}
 \end{frame}
   
 \end{document}
diff --git a/day2/tda.tex b/day2/tda.tex
index 664eed3..7e32ef9 100644
--- a/day2/tda.tex
+++ b/day2/tda.tex
@@ -97,12 +97,12 @@
 % Title page
 \title[]{Test Driven Approach}
 
-\author[FOSSEE Team] {Asokan Pichai\\Prabhu Ramachandran}
+\author[FOSSEE Team] {FOSSEE}
 
 \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
 \date[] {11, October 2009}
 \date[] % (optional)
-}
+
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
 %\pgfdeclareimage[height=0.75cm]{iitblogo}{iitblogo}
@@ -145,7 +145,7 @@
 \section{Test Driven Approach}
 
 \begin{frame}
-    \frametitle{Testing code with \typ{nosetests}}
+    \frametitle{Testing code with nosetests}
    
     \begin{itemize}
         \item Writing tests is really simple!
-- 
cgit