summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--day1/exercises.tex303
-rw-r--r--day1/session5.tex210
2 files changed, 192 insertions, 321 deletions
diff --git a/day1/exercises.tex b/day1/exercises.tex
deleted file mode 100644
index 3fe435e..0000000
--- a/day1/exercises.tex
+++ /dev/null
@@ -1,303 +0,0 @@
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-%Tutorial slides on Python.
-%
-% Author: Prabhu Ramachandran <prabhu at aero.iitb.ac.in>
-% Copyright (c) 2005-2009, Prabhu Ramachandran
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\documentclass[14pt,compress]{beamer}
-%\documentclass[draft]{beamer}
-%\documentclass[compress,handout]{beamer}
-%\usepackage{pgfpages}
-%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]
-
-% Modified from: generic-ornate-15min-45min.de.tex
-\mode<presentation>
-{
- \usetheme{Warsaw}
- \useoutertheme{infolines}
- \setbeamercovered{transparent}
-}
-
-\usepackage[english]{babel}
-\usepackage[latin1]{inputenc}
-%\usepackage{times}
-\usepackage[T1]{fontenc}
-
-% Taken from Fernando's slides.
-\usepackage{ae,aecompl}
-\usepackage{mathpazo,courier,euler}
-\usepackage[scaled=.95]{helvet}
-
-\definecolor{darkgreen}{rgb}{0,0.5,0}
-
-\usepackage{listings}
-\lstset{language=Python,
- basicstyle=\ttfamily\bfseries,
- commentstyle=\color{red}\itshape,
- stringstyle=\color{darkgreen},
- showstringspaces=false,
- keywordstyle=\color{blue}\bfseries}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% Macros
-\setbeamercolor{emphbar}{bg=blue!20, fg=black}
-\newcommand{\emphbar}[1]
-{\begin{beamercolorbox}[rounded=true]{emphbar}
- {#1}
- \end{beamercolorbox}
-}
-\newcounter{time}
-\setcounter{time}{0}
-\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}
-
-\newcommand{\typ}[1]{\texttt{#1}}
-
-\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} }
-
-%%% This is from Fernando's setup.
-% \usepackage{color}
-% \definecolor{orange}{cmyk}{0,0.4,0.8,0.2}
-% % Use and configure listings package for nicely formatted code
-% \usepackage{listings}
-% \lstset{
-% language=Python,
-% basicstyle=\small\ttfamily,
-% commentstyle=\ttfamily\color{blue},
-% stringstyle=\ttfamily\color{orange},
-% showstringspaces=false,
-% breaklines=true,
-% postbreak = \space\dots
-% }
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% Title page
-\title[Exercises]{Exercises}
-
-\author[FOSSEE] {FOSSEE}
-
-\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
-\date[] {11 January, 2010\\Day 1, Session 5}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
-%\logo{\pgfuseimage{iitmlogo}}
-
-
-%% Delete this, if you do not want the table of contents to pop up at
-%% the beginning of each subsection:
-\AtBeginSubsection[]
-{
- \begin{frame}<beamer>
- \frametitle{Outline}
- \tableofcontents[currentsection,currentsubsection]
- \end{frame}
-}
-
-
-% If you wish to uncover everything in a step-wise fashion, uncomment
-% the following command:
-%\beamerdefaultoverlayspecification{<+->}
-
-%\includeonlyframes{current,current1,current2,current3,current4,current5,current6}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% DOCUMENT STARTS
-\begin{document}
-
-\begin{frame}
- \titlepage
-\end{frame}
-
-
-\begin{frame}[fragile]
- \frametitle{Problem 1}
- \begin{columns}
- \column{0.5\textwidth}
- \hspace*{-0.5in}
- \includegraphics[height=2in, interpolate=true]{data/L-Tsq.png}
- \column{0.45\textwidth}
- \begin{block}{Example code}
- \tiny
- \begin{lstlisting}
-l = []
-t = []
-for line in open('pendulum.txt'):
- point = line.split()
- l.append(float(point[0]))
- t.append(float(point[1]))
-tsq = []
-for time in t:
- tsq.append(time*time)
-plot(l, tsq, '.')
- \end{lstlisting}
- \end{block}
- \end{columns}
- \begin{block}{Problem Statement}
- Tweak above code to plot data in file 'location.txt'.
- \end{block}
-\end{frame}
-
-\begin{frame}
- \frametitle{Problem 1 cont...}
- \begin{itemize}
- \item Label both the axes.
- \item What kind of motion is this?
- \item Title the graph accordingly.
- \item Annotate the position where vertical velocity is zero.
- \end{itemize}
-\end{frame}
-
-\begin{frame}[fragile]
- \frametitle{Problem 2}
- \begin{columns}
- \column{0.5\textwidth}
- \hspace*{-0.5in}
- \includegraphics[height=2in, interpolate=true]{data/points}
- \column{0.45\textwidth}
- \begin{block}{Line between two points}
- \tiny
- \begin{lstlisting}
-In []: x = [1, 5]
-In []: y = [1, 4]
-In []: plot(x, y)
- \end{lstlisting}
- \end{block}
- \end{columns}
- Line can be plotted using arrays of coordinates.
- \pause
- \begin{block}{Problem statement}
- Write a Program that plots a regular n-gon(Let n = 5).
- \end{block}
-\end{frame}
-
-
-\begin{frame}[fragile]
- \frametitle{Problem 3}
- \begin{columns}
- \column{0.5\textwidth}
- \hspace*{-0.5in}
- \includegraphics[height=2in, interpolate=true]{data/damp}
- \column{0.45\textwidth}
- \begin{block}{Damped Oscillation}
- \tiny
- \begin{lstlisting}
-In []: x = linspace(0, 4*pi)
-In []: plot(x, exp(x/10)*sin(x))
- \end{lstlisting}
- \end{block}
- \end{columns}
-\end{frame}
-
-\begin{frame}[fragile]
- \frametitle{Problem 3 cont...}
-Create a sequence of images in which the damped oscillator($e^{x/10}sin(x)$) slowly evolves over time.
-\begin{columns}
-\column{0.35\textwidth}
-\includegraphics[width=1.5in,height=1.5in, interpolate=true]{data/plot2}
-\column{0.35\textwidth}
-\includegraphics[width=1.5in,height=1.5in, interpolate=true]{data/plot4}
-\column{0.35\textwidth}
-\includegraphics[width=1.5in,height=1.5in, interpolate=true]{data/plot6}
-\end{columns}
-\begin{block}{Hint}
-\small
- \begin{lstlisting}
-savefig('plot'+str(i)+'.png') #i is int variable
- \end{lstlisting}
-\end{block}
-\end{frame}
-
-\begin{frame}[fragile]
- \frametitle{Problem 4}
- \begin{lstlisting}
-In []: x = imread('smoothing.png')
-In []: x.shape
-Out[]: (256, 256)
-In []: imshow(x,cmap=cm.gray)
- \end{lstlisting}
-\emphbar{Replace each pixel with mean of neighboring pixels}
- \begin{center}
- \includegraphics[height=1in, interpolate=true]{data/neighbour}
- \end{center}
-\end{frame}
-
-\begin{frame}
- \begin{center}
- \includegraphics[height=3in, interpolate=true]{data/smoothing}
- \end{center}
-\end{frame}
-
-\begin{frame}[fragile]
- \frametitle{Problem 4: Approach}
- For \typ{y} being resultant image:
- \begin{lstlisting}
-y[1, 1] = x[0, 1]/4 + x[1, 0]/4
- + x[2, 1]/4 + x[1, 2]/4
- \end{lstlisting}
- \begin{columns}
- \column{0.45\textwidth}
- \hspace*{-0.5in}
- \includegraphics[height=1.5in, interpolate=true]{data/smoothing}
- \column{0.45\textwidth}
- \hspace*{-0.5in}
- \includegraphics[height=1.5in, interpolate=true]{data/after-filter}
- \end{columns}
- \begin{block}{Hint:}
- Use array Slicing.
- \end{block}
-\end{frame}
-
-\begin{frame}[fragile]
- \frametitle{Solution}
- \begin{lstlisting}
-In []: y = zeros_like(x)
-In []: y[1:-1,1:-1] = x[:-2,1:-1]/4+
- x[2:,1:-1]/4+
- x[1:-1,2:]/4+
- x[1:-1,:-2]/4
-In []: imshow(y,cmap=cm.gray)
- \end{lstlisting}
-\end{frame}
-
-
-\end{document}
-
-%% \begin{frame}
-%% \frametitle{Problem 4}
-%% Legendre polynomials $P_n(x)$ are defined by the following recurrence relation
-
-%% \center{$(n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0$}\\
-
-%% with $P_0(x) = 1$, $P_1(x) = x$ and $P_2(x) = (3x^2 - 1)/2$. Compute the next three
-%% Legendre polynomials and plot all 6 over the interval [-1,1].
-%% \end{frame}
-
-%% \begin{frame}[fragile]
-%% \frametitle{Problem Set 5}
-%% \begin{columns}
-%% \column{0.6\textwidth}
-%% \small{
-%% \begin{itemize}
-%% \item[3] Consider the iteration $x_{n+1} = f(x_n)$ where $f(x) = kx(1-x)$. Plot the successive iterates of this process as explained below.
-%% \end{itemize}}
-%% \column{0.35\textwidth}
-%% \hspace*{-0.5in}
-%% \includegraphics[height=1.6in, interpolate=true]{data/cobweb}
-%% \end{columns}
-%% \end{frame}
-
-%% \begin{frame}
-%% \frametitle{Problem Set 5.3}
-%% Plot the cobweb plot as follows:
-%% \begin{enumerate}
-%% \item Start at $(x_0, 0)$ ($\implies$ i=0)
-%% \item Draw a line to $(x_i, f(x_i))$
-%% \item Set $x_{i+1} = f(x_i)$
-%% \item Draw a line to $(x_{i+1}, x_{i+1})$
-%% \item $(i\implies i+1)$
-%% \item Repeat from 2 for as long as you want
-%% \end{enumerate}
-%% \inctime{20}
-%% \end{frame}
diff --git a/day1/session5.tex b/day1/session5.tex
index 326e8fe..3fe435e 100644
--- a/day1/session5.tex
+++ b/day1/session5.tex
@@ -1,8 +1,8 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Tutorial slides on Python.
%
-% Author: FOSSEE
-% Copyright (c) 2009, FOSSEE, IIT Bombay
+% Author: Prabhu Ramachandran <prabhu at aero.iitb.ac.in>
+% Copyright (c) 2005-2009, Prabhu Ramachandran
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[14pt,compress]{beamer}
@@ -23,7 +23,6 @@
\usepackage[latin1]{inputenc}
%\usepackage{times}
\usepackage[T1]{fontenc}
-\usepackage{amsmath}
% Taken from Fernando's slides.
\usepackage{ae,aecompl}
@@ -52,7 +51,7 @@
\setcounter{time}{0}
\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}
-\newcommand{\typ}[1]{\lstinline{#1}}
+\newcommand{\typ}[1]{\texttt{#1}}
\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} }
@@ -74,12 +73,12 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
-\title[]{}
+\title[Exercises]{Exercises}
\author[FOSSEE] {FOSSEE}
\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
-\date[] {11, January 2010\\Day 1, Session 5}
+\date[] {11 January, 2010\\Day 1, Session 5}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
@@ -96,13 +95,6 @@
\end{frame}
}
-\AtBeginSection[]
-{
- \begin{frame}<beamer>
- \frametitle{Outline}
- \tableofcontents[currentsection,currentsubsection]
- \end{frame}
-}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
@@ -118,12 +110,194 @@
\titlepage
\end{frame}
-%% \begin{frame}
-%% \frametitle{Outline}
-%% \tableofcontents
-%% % \pausesections
-%% \end{frame}
+
+\begin{frame}[fragile]
+ \frametitle{Problem 1}
+ \begin{columns}
+ \column{0.5\textwidth}
+ \hspace*{-0.5in}
+ \includegraphics[height=2in, interpolate=true]{data/L-Tsq.png}
+ \column{0.45\textwidth}
+ \begin{block}{Example code}
+ \tiny
+ \begin{lstlisting}
+l = []
+t = []
+for line in open('pendulum.txt'):
+ point = line.split()
+ l.append(float(point[0]))
+ t.append(float(point[1]))
+tsq = []
+for time in t:
+ tsq.append(time*time)
+plot(l, tsq, '.')
+ \end{lstlisting}
+ \end{block}
+ \end{columns}
+ \begin{block}{Problem Statement}
+ Tweak above code to plot data in file 'location.txt'.
+ \end{block}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Problem 1 cont...}
+ \begin{itemize}
+ \item Label both the axes.
+ \item What kind of motion is this?
+ \item Title the graph accordingly.
+ \item Annotate the position where vertical velocity is zero.
+ \end{itemize}
+\end{frame}
+
+\begin{frame}[fragile]
+ \frametitle{Problem 2}
+ \begin{columns}
+ \column{0.5\textwidth}
+ \hspace*{-0.5in}
+ \includegraphics[height=2in, interpolate=true]{data/points}
+ \column{0.45\textwidth}
+ \begin{block}{Line between two points}
+ \tiny
+ \begin{lstlisting}
+In []: x = [1, 5]
+In []: y = [1, 4]
+In []: plot(x, y)
+ \end{lstlisting}
+ \end{block}
+ \end{columns}
+ Line can be plotted using arrays of coordinates.
+ \pause
+ \begin{block}{Problem statement}
+ Write a Program that plots a regular n-gon(Let n = 5).
+ \end{block}
+\end{frame}
+
+
+\begin{frame}[fragile]
+ \frametitle{Problem 3}
+ \begin{columns}
+ \column{0.5\textwidth}
+ \hspace*{-0.5in}
+ \includegraphics[height=2in, interpolate=true]{data/damp}
+ \column{0.45\textwidth}
+ \begin{block}{Damped Oscillation}
+ \tiny
+ \begin{lstlisting}
+In []: x = linspace(0, 4*pi)
+In []: plot(x, exp(x/10)*sin(x))
+ \end{lstlisting}
+ \end{block}
+ \end{columns}
+\end{frame}
+
+\begin{frame}[fragile]
+ \frametitle{Problem 3 cont...}
+Create a sequence of images in which the damped oscillator($e^{x/10}sin(x)$) slowly evolves over time.
+\begin{columns}
+\column{0.35\textwidth}
+\includegraphics[width=1.5in,height=1.5in, interpolate=true]{data/plot2}
+\column{0.35\textwidth}
+\includegraphics[width=1.5in,height=1.5in, interpolate=true]{data/plot4}
+\column{0.35\textwidth}
+\includegraphics[width=1.5in,height=1.5in, interpolate=true]{data/plot6}
+\end{columns}
+\begin{block}{Hint}
+\small
+ \begin{lstlisting}
+savefig('plot'+str(i)+'.png') #i is int variable
+ \end{lstlisting}
+\end{block}
+\end{frame}
+
+\begin{frame}[fragile]
+ \frametitle{Problem 4}
+ \begin{lstlisting}
+In []: x = imread('smoothing.png')
+In []: x.shape
+Out[]: (256, 256)
+In []: imshow(x,cmap=cm.gray)
+ \end{lstlisting}
+\emphbar{Replace each pixel with mean of neighboring pixels}
+ \begin{center}
+ \includegraphics[height=1in, interpolate=true]{data/neighbour}
+ \end{center}
+\end{frame}
+
+\begin{frame}
+ \begin{center}
+ \includegraphics[height=3in, interpolate=true]{data/smoothing}
+ \end{center}
+\end{frame}
+
+\begin{frame}[fragile]
+ \frametitle{Problem 4: Approach}
+ For \typ{y} being resultant image:
+ \begin{lstlisting}
+y[1, 1] = x[0, 1]/4 + x[1, 0]/4
+ + x[2, 1]/4 + x[1, 2]/4
+ \end{lstlisting}
+ \begin{columns}
+ \column{0.45\textwidth}
+ \hspace*{-0.5in}
+ \includegraphics[height=1.5in, interpolate=true]{data/smoothing}
+ \column{0.45\textwidth}
+ \hspace*{-0.5in}
+ \includegraphics[height=1.5in, interpolate=true]{data/after-filter}
+ \end{columns}
+ \begin{block}{Hint:}
+ Use array Slicing.
+ \end{block}
+\end{frame}
+
+\begin{frame}[fragile]
+ \frametitle{Solution}
+ \begin{lstlisting}
+In []: y = zeros_like(x)
+In []: y[1:-1,1:-1] = x[:-2,1:-1]/4+
+ x[2:,1:-1]/4+
+ x[1:-1,2:]/4+
+ x[1:-1,:-2]/4
+In []: imshow(y,cmap=cm.gray)
+ \end{lstlisting}
+\end{frame}
\end{document}
+%% \begin{frame}
+%% \frametitle{Problem 4}
+%% Legendre polynomials $P_n(x)$ are defined by the following recurrence relation
+
+%% \center{$(n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0$}\\
+
+%% with $P_0(x) = 1$, $P_1(x) = x$ and $P_2(x) = (3x^2 - 1)/2$. Compute the next three
+%% Legendre polynomials and plot all 6 over the interval [-1,1].
+%% \end{frame}
+
+%% \begin{frame}[fragile]
+%% \frametitle{Problem Set 5}
+%% \begin{columns}
+%% \column{0.6\textwidth}
+%% \small{
+%% \begin{itemize}
+%% \item[3] Consider the iteration $x_{n+1} = f(x_n)$ where $f(x) = kx(1-x)$. Plot the successive iterates of this process as explained below.
+%% \end{itemize}}
+%% \column{0.35\textwidth}
+%% \hspace*{-0.5in}
+%% \includegraphics[height=1.6in, interpolate=true]{data/cobweb}
+%% \end{columns}
+%% \end{frame}
+
+%% \begin{frame}
+%% \frametitle{Problem Set 5.3}
+%% Plot the cobweb plot as follows:
+%% \begin{enumerate}
+%% \item Start at $(x_0, 0)$ ($\implies$ i=0)
+%% \item Draw a line to $(x_i, f(x_i))$
+%% \item Set $x_{i+1} = f(x_i)$
+%% \item Draw a line to $(x_{i+1}, x_{i+1})$
+%% \item $(i\implies i+1)$
+%% \item Repeat from 2 for as long as you want
+%% \end{enumerate}
+%% \inctime{20}
+%% \end{frame}