<?xml version="1.0" encoding="UTF-8"?> <!-- * * This help file was generated from fminunc.sci using help_from_sci(). * --> <refentry version="5.0-subset Scilab" xml:id="fminunc" xml:lang="en" xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:ns3="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:scilab="http://www.scilab.org" xmlns:db="http://docbook.org/ns/docbook"> <refnamediv> <refname>fminunc</refname> <refpurpose>Solves a multi-variable unconstrainted optimization problem</refpurpose> </refnamediv> <refsynopsisdiv> <title>Calling Sequence</title> <synopsis> xopt = fminunc(f,x0) xopt = fminunc(f,x0,options) [xopt,fopt] = fminunc(.....) [xopt,fopt,exitflag]= fminunc(.....) [xopt,fopt,exitflag,output]= fminunc(.....) [xopt,fopt,exitflag,output,gradient]=fminunc(.....) [xopt,fopt,exitflag,output,gradient,hessian]=fminunc(.....) </synopsis> </refsynopsisdiv> <refsection> <title>Parameters</title> <variablelist> <varlistentry><term>f :</term> <listitem><para> a function, representing the objective function of the problem</para></listitem></varlistentry> <varlistentry><term>x0 :</term> <listitem><para> a vector of doubles, containing the starting of variables.</para></listitem></varlistentry> <varlistentry><term>options:</term> <listitem><para> a list, containing the option for user to specify. See below for details.</para></listitem></varlistentry> <varlistentry><term>xopt :</term> <listitem><para> a vector of doubles, the computed solution of the optimization problem.</para></listitem></varlistentry> <varlistentry><term>fopt :</term> <listitem><para> a scalar of double, the function value at x.</para></listitem></varlistentry> <varlistentry><term>exitflag :</term> <listitem><para> a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry> <varlistentry><term>output :</term> <listitem><para> a structure, containing the information about the optimization. See below for details.</para></listitem></varlistentry> <varlistentry><term>gradient :</term> <listitem><para> a vector of doubles, containing the the gradient of the solution.</para></listitem></varlistentry> <varlistentry><term>hessian :</term> <listitem><para> a matrix of doubles, containing the the hessian of the solution.</para></listitem></varlistentry> </variablelist> </refsection> <refsection> <title>Description</title> <para> Search the minimum of an unconstrained optimization problem specified by : Find the minimum of f(x) such that </para> <para> <latex> \begin{eqnarray} &\mbox{min}_{x} & f(x)\\ \end{eqnarray} </latex> </para> <para> The routine calls Ipopt for solving the Un-constrained Optimization problem, Ipopt is a library written in C++. </para> <para> The options allows the user to set various parameters of the Optimization problem. It should be defined as type "list" and contains the following fields. <itemizedlist> <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], "Gradient", ---, "Hessian", ---);</listitem> <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem> <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem> <listitem>Gradient : a function, representing the gradient function of the Objective in Vector Form.</listitem> <listitem>Hessian : a function, representing the hessian function of the Objective in Symmetric Matrix Form.</listitem> <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem> </itemizedlist> </para> <para> The exitflag allows to know the status of the optimization which is given back by Ipopt. <itemizedlist> <listitem>exitflag=0 : Optimal Solution Found </listitem> <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem> <listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem> <listitem>exitflag=3 : Stop at Tiny Step.</listitem> <listitem>exitflag=4 : Solved To Acceptable Level.</listitem> <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem> </itemizedlist> </para> <para> For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/ </para> <para> The output data structure contains detailed informations about the optimization process. It has type "struct" and contains the following fields. <itemizedlist> <listitem>output.Iterations: The number of iterations performed during the search</listitem> <listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem> <listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem> <listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem> </itemizedlist> </para> <para> </para> </refsection> <refsection> <title>Examples</title> <programlisting role="example"><![CDATA[ //Find x in R^2 such that it minimizes the Rosenbrock function //f = 100*(x2 - x1^2)^2 + (1-x1)^2 //Objective function to be minimised function y= f(x) y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2; endfunction //Starting point x0=[-1,2]; //Gradient of objective function function y= fGrad(x) y= [-400*x(1)*x(2) + 400*x(1)^3 + 2*x(1)-2, 200*(x(2)-x(1)^2)]; endfunction //Hessian of Objective Function function y= fHess(x) y= [1200*x(1)^2- 400*x(2) + 2, -400*x(1);-400*x(1), 200 ]; endfunction //Options options=list("MaxIter", [1500], "CpuTime", [500], "Gradient", fGrad, "Hessian", fHess); //Calling Ipopt [xopt,fopt,exitflag,output,gradient,hessian]=fminunc(f,x0,options) // Press ENTER to continue ]]></programlisting> </refsection> <refsection> <title>Examples</title> <programlisting role="example"><![CDATA[ //Find x in R^2 such that the below function is minimum //f = x1^2 + x2^2 //Objective function to be minimised function y= f(x) y= x(1)^2 + x(2)^2; endfunction //Starting point x0=[2,1]; //Calling Ipopt [xopt,fopt]=fminunc(f,x0) // Press ENTER to continue ]]></programlisting> </refsection> <refsection> <title>Examples</title> <programlisting role="example"><![CDATA[ //The below problem is an unbounded problem: //Find x in R^2 such that the below function is minimum //f = - x1^2 - x2^2 //Objective function to be minimised function y= f(x) y= -x(1)^2 - x(2)^2; endfunction //Starting point x0=[2,1]; //Gradient of objective function function y= fGrad(x) y= [-2*x(1),-2*x(2)]; endfunction //Hessian of Objective Function function y= fHess(x) y= [-2,0;0,-2]; endfunction //Options options=list("MaxIter", [1500], "CpuTime", [500], "Gradient", fGrad, "Hessian", fHess); //Calling Ipopt [xopt,fopt,exitflag,output,gradient,hessian]=fminunc(f,x0,options) ]]></programlisting> </refsection> <refsection> <title>Authors</title> <simplelist type="vert"> <member>R.Vidyadhar , Vignesh Kannan</member> </simplelist> </refsection> </refentry>