From 29e8e8bbd43892c7fa146c165fdf128f786d6a7b Mon Sep 17 00:00:00 2001 From: Harpreet Date: Mon, 2 Nov 2015 16:20:08 +0530 Subject: README.rst added --- help/en_US/README.rst | 6 + help/en_US/README.rst~ | 5 + help/en_US/master_help.xml | 8 +- help/en_US/qpipopt.xml | 16 +- help/en_US/qpipoptmat.xml | 149 +++++++++++++++ help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS | Bin 6478 -> 7157 bytes .../scilab_en_US_help/JavaHelpSearch/DOCS.TAB | 8 +- .../en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS | Bin 255 -> 258 bytes .../scilab_en_US_help/JavaHelpSearch/POSITIONS | Bin 31519 -> 35046 bytes help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA | 2 +- help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP | Bin 16384 -> 16384 bytes .../scilab_en_US_help/_LaTeX_qpipoptmat.xml_1.png | Bin 0 -> 3110 bytes .../scilab_en_US_help/_LaTeX_symphonymat.xml_1.png | Bin 0 -> 2934 bytes help/en_US/scilab_en_US_help/index.html | 4 +- help/en_US/scilab_en_US_help/jhelpmap.jhm | 4 +- help/en_US/scilab_en_US_help/jhelptoc.xml | 4 +- help/en_US/scilab_en_US_help/qpipopt.html | 20 +- help/en_US/scilab_en_US_help/qpipoptmat.html | 146 +++++++++++++++ .../section_19f4f1e5726c01d683e8b82be0a7e910.html | 4 +- .../section_508f0b211d17ea6769714cc144e6b731.html | 4 +- help/en_US/scilab_en_US_help/symphony.html | 14 +- help/en_US/scilab_en_US_help/symphonymat.html | 201 ++++++++++++++++++++ help/en_US/symphony.xml | 7 +- help/en_US/symphonymat.xml | 203 +++++++++++++++++++++ 24 files changed, 764 insertions(+), 41 deletions(-) create mode 100644 help/en_US/README.rst create mode 100644 help/en_US/README.rst~ create mode 100644 help/en_US/qpipoptmat.xml create mode 100644 help/en_US/scilab_en_US_help/_LaTeX_qpipoptmat.xml_1.png create mode 100644 help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png create mode 100644 help/en_US/scilab_en_US_help/qpipoptmat.html create mode 100644 help/en_US/scilab_en_US_help/symphonymat.html create mode 100644 help/en_US/symphonymat.xml (limited to 'help') diff --git a/help/en_US/README.rst b/help/en_US/README.rst new file mode 100644 index 0000000..95f8ace --- /dev/null +++ b/help/en_US/README.rst @@ -0,0 +1,6 @@ +Help XML +======== + +This directory contains all of help files in XML. These files are automatically generated by help_from_sci function by the help of comments in Macro. + +By the help of this we can generate html and jar files. diff --git a/help/en_US/README.rst~ b/help/en_US/README.rst~ new file mode 100644 index 0000000..8e9edd5 --- /dev/null +++ b/help/en_US/README.rst~ @@ -0,0 +1,5 @@ +Help XML +======== + +This directory contains all of help files in XML. These files are automatically generated by help_from_sci function by the help of comments in Macro. + diff --git a/help/en_US/master_help.xml b/help/en_US/master_help.xml index 791d3d0..67338f2 100644 --- a/help/en_US/master_help.xml +++ b/help/en_US/master_help.xml @@ -2,9 +2,9 @@ - + - + @@ -80,9 +80,9 @@ Symphony Toolbox &a6b85f6e0c98751f20b68663a23cb4cd2; -&a44928acec52adf395379e18fcff06730; +&a8549a3935858ed104f4749ca2243456a; &aca972f273143ecb39f56b42e4723ac67; -&a9953e61e8dd264a86df73772d3055e7f; +&a9910ada35b57b0581e8a77d145abac4a; Symphony Native Functions &acc223314e8a8bc290a13618df33a6237; diff --git a/help/en_US/qpipopt.xml b/help/en_US/qpipopt.xml index 144fe18..aecbe40 100644 --- a/help/en_US/qpipopt.xml +++ b/help/en_US/qpipopt.xml @@ -25,6 +25,8 @@ Calling Sequence xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB) + xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB,x0) + xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB,x0,param) [xopt,fopt,exitflag,output,lamda] = qpipopt( ... ) @@ -40,17 +42,21 @@ Q : a n x n symmetric matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem. p : - a 1 x n matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem + a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem LB : - a 1 x n matrix of doubles, where n is number of variables, contains lower bounds of the variables. + a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables. UB : - a 1 x n matrix of doubles, where n is number of variables, contains upper bounds of the variables. + a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables. conMatrix : a m x n matrix of doubles, where n is number of variables and m is number of constraints, contains matrix representing the constraint matrix conLB : a m x 1 matrix of doubles, where m is number of constraints, contains lower bounds of the constraints. conUB : a m x 1 matrix of doubles, where m is number of constraints, contains upper bounds of the constraints. + x0 : + a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables. + param : + a list containing the the parameters to be set. xopt : a 1xn matrix of doubles, the computed solution of the optimization problem. fopt : @@ -104,7 +110,9 @@ ub=[10000; 100; 1.5; 100; 100; 1000]; p=[1; 2; 3; 4; 5; 6]; Q=eye(6,6); nbVar = 6; nbCon = 5; -[xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB) +x0 = repmat(0,nbVar,1); +param = list("MaxIter", 300, "CpuTime", 100); +[xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB,x0,param) ]]> diff --git a/help/en_US/qpipoptmat.xml b/help/en_US/qpipoptmat.xml new file mode 100644 index 0000000..eb8e737 --- /dev/null +++ b/help/en_US/qpipoptmat.xml @@ -0,0 +1,149 @@ + + + + + + + + qpipoptmat + Solves a linear quadratic problem. + + + + + Calling Sequence + + x = qpipoptmat(H,f) + x = qpipoptmat(H,f,A,b) + x = qpipoptmat(H,f,A,b,Aeq,beq) + x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub) + x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0) + x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param) + [xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... ) + + + + + + Parameters + + H : + a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem. + f : + a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem + A : + a m x n matrix of doubles, represents the linear coefficients in the inequality constraints + b : + a column vector of doubles, represents the linear coefficients in the inequality constraints + Aeq : + a meq x n matrix of doubles, represents the linear coefficients in the equality constraints + beq : + a vector of doubles, represents the linear coefficients in the equality constraints + LB : + a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables. + UB : + a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables. + x0 : + a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables. + param : + a list containing the the parameters to be set. + xopt : + a nx1 matrix of doubles, the computed solution of the optimization problem. + fopt : + a 1x1 matrix of doubles, the function value at x. + exitflag : + Integer identifying the reason the algorithm terminated. + output : + Structure containing information about the optimization. + lambda : + Structure containing the Lagrange multipliers at the solution x (separated by constraint type). + + + + + Description + +Search the minimum of a constrained linear quadratic optimization problem specified by : +find the minimum of f(x) such that + + + +\begin{eqnarray} +&\mbox{min}_{x} +& 1/2*x'*H*x + f'*x \\ +& \text{subject to} & A.x \leq b \\ +& & Aeq.x \leq beq \\ +& & lb \leq x \leq ub \\ +\end{eqnarray} + + + +We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird. + + + + + + + Examples + + + + + Examples + + + + + Authors + + Keyur Joshi, Saikiran, Iswarya, Harpreet Singh + + + diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS index 1b55b83..bf90ce2 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS and b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS differ diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB index 3b7b18b..1b174ab 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB @@ -1,6 +1,2 @@ -e__y_u'\''uEIuSI0'@ [ -CP6N4*=h'  -rq\tX5 -C04 ҃bBG ҃_ -*]*紆X7 aH#J(0 Xtl4 -8PhU}h`TtW(h bEh2QUWe  d몙w_Ju“j_zf_!#qC &" ((!|dX(O 00ٽ(ȿ5F,質F,ήX, :0/40θ+,22:~̪2ҋ,. 0 ` \ No newline at end of file +e__y_u'\ _4_hT_e4s  _ +C`7FF$ 6(q\tX6±P$ tؠ`6 |*V@XR AX{0lHJ (3\/ P$2 YGGr $V(&QoZ(0Ou8?_)[j_z&eکY;7|T0 !,B(*2 Ur&(O 00мٱF6/tг]~m*`QӦBj/ //9Y.,d꪿e7erd̫t0 0˨, \ No newline at end of file diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS index e290f81..ac2dfed 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS and b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS differ diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS index 7fd9ab2..8be86f0 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS and b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS differ diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA index 59337ab..c0f76d2 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA @@ -1,2 +1,2 @@ JavaSearch 1.0 -TMAP bs=2048 rt=1 fl=-1 id1=1347 id2=1 +TMAP bs=2048 rt=1 fl=-1 id1=1355 id2=1 diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP index 0f25c4d..28f8966 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP and b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP differ diff --git a/help/en_US/scilab_en_US_help/_LaTeX_qpipoptmat.xml_1.png b/help/en_US/scilab_en_US_help/_LaTeX_qpipoptmat.xml_1.png new file mode 100644 index 0000000..b6e2743 Binary files /dev/null and b/help/en_US/scilab_en_US_help/_LaTeX_qpipoptmat.xml_1.png differ diff --git a/help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png b/help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png new file mode 100644 index 0000000..07dafd6 Binary files /dev/null and b/help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png differ diff --git a/help/en_US/scilab_en_US_help/index.html b/help/en_US/scilab_en_US_help/index.html index 2b1442a..12fb83c 100644 --- a/help/en_US/scilab_en_US_help/index.html +++ b/help/en_US/scilab_en_US_help/index.html @@ -38,7 +38,7 @@ -
  • qpipopt_matSolves a linear quadratic problem.
  • +
  • qpipoptmatSolves a linear quadratic problem.
  • @@ -50,7 +50,7 @@ -
  • symphony_matSolves a mixed integer linear programming constrained optimization problem in intlinprog format.
  • +
  • symphonymatSolves a mixed integer linear programming constrained optimization problem in intlinprog format.
  • Symphony Native Functions
    • sym_addConstrAdd a new constraint
    • diff --git a/help/en_US/scilab_en_US_help/jhelpmap.jhm b/help/en_US/scilab_en_US_help/jhelpmap.jhm index 1601f23..9dfdea5 100644 --- a/help/en_US/scilab_en_US_help/jhelpmap.jhm +++ b/help/en_US/scilab_en_US_help/jhelpmap.jhm @@ -4,9 +4,9 @@ - + - + diff --git a/help/en_US/scilab_en_US_help/jhelptoc.xml b/help/en_US/scilab_en_US_help/jhelptoc.xml index 463b86d..84c6d37 100644 --- a/help/en_US/scilab_en_US_help/jhelptoc.xml +++ b/help/en_US/scilab_en_US_help/jhelptoc.xml @@ -4,9 +4,9 @@ - + - + diff --git a/help/en_US/scilab_en_US_help/qpipopt.html b/help/en_US/scilab_en_US_help/qpipopt.html index fba4521..6659f44 100644 --- a/help/en_US/scilab_en_US_help/qpipopt.html +++ b/help/en_US/scilab_en_US_help/qpipopt.html @@ -20,7 +20,7 @@ - qpipopt_mat >> + qpipoptmat >> @@ -38,6 +38,8 @@

      Calling Sequence

      xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB)
      +xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB,x0)
      +xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB,x0,param)
       [xopt,fopt,exitflag,output,lamda] = qpipopt( ... )

      Parameters

      @@ -48,17 +50,21 @@
      Q :

      a n x n symmetric matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.

      p : -

      a 1 x n matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem

      +

      a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem

      LB : -

      a 1 x n matrix of doubles, where n is number of variables, contains lower bounds of the variables.

      +

      a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.

      UB : -

      a 1 x n matrix of doubles, where n is number of variables, contains upper bounds of the variables.

      +

      a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.

      conMatrix :

      a m x n matrix of doubles, where n is number of variables and m is number of constraints, contains matrix representing the constraint matrix

      conLB :

      a m x 1 matrix of doubles, where m is number of constraints, contains lower bounds of the constraints.

      conUB :

      a m x 1 matrix of doubles, where m is number of constraints, contains upper bounds of the constraints.

      +
      x0 : +

      a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.

      +
      param : +

      a list containing the the parameters to be set.

      xopt :

      a 1xn matrix of doubles, the computed solution of the optimization problem.

      fopt : @@ -92,7 +98,9 @@ find the minimum of f(x) such that

      p=[1; 2; 3; 4; 5; 6]; Q=eye(6,6); nbVar = 6; nbCon = 5; -[xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
      +x0 = repmat(0,nbVar,1); +param = list("MaxIter", 300, "CpuTime", 100); +[xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB,x0,param)

      Examples

      //Find the value of x that minimize following function
      @@ -130,7 +138,7 @@ find the minimum of f(x) such that

      - qpipopt_mat >> + qpipoptmat >>
      diff --git a/help/en_US/scilab_en_US_help/qpipoptmat.html b/help/en_US/scilab_en_US_help/qpipoptmat.html new file mode 100644 index 0000000..5e7518e --- /dev/null +++ b/help/en_US/scilab_en_US_help/qpipoptmat.html @@ -0,0 +1,146 @@ + + + qpipoptmat + + + +
      + + + + +
      + << qpipopt + + + Symphony Toolbox + + + symphony >> + +
      +
      +
      + + + + Symphony Toolbox >> Symphony Toolbox > qpipoptmat + +

      +

      qpipoptmat

      +

      Solves a linear quadratic problem.

      + + +

      Calling Sequence

      +
      x = qpipoptmat(H,f)
      +x = qpipoptmat(H,f,A,b)
      +x = qpipoptmat(H,f,A,b,Aeq,beq)
      +x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub)
      +x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0)
      +x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param)
      +[xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... )
      + +

      Parameters

      +
      H : +

      a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.

      +
      f : +

      a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem

      +
      A : +

      a m x n matrix of doubles, represents the linear coefficients in the inequality constraints

      +
      b : +

      a column vector of doubles, represents the linear coefficients in the inequality constraints

      +
      Aeq : +

      a meq x n matrix of doubles, represents the linear coefficients in the equality constraints

      +
      beq : +

      a vector of doubles, represents the linear coefficients in the equality constraints

      +
      LB : +

      a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.

      +
      UB : +

      a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.

      +
      x0 : +

      a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.

      +
      param : +

      a list containing the the parameters to be set.

      +
      xopt : +

      a nx1 matrix of doubles, the computed solution of the optimization problem.

      +
      fopt : +

      a 1x1 matrix of doubles, the function value at x.

      +
      exitflag : +

      Integer identifying the reason the algorithm terminated.

      +
      output : +

      Structure containing information about the optimization.

      +
      lambda : +

      Structure containing the Lagrange multipliers at the solution x (separated by constraint type).

      + +

      Description

      +

      Search the minimum of a constrained linear quadratic optimization problem specified by : +find the minimum of f(x) such that

      +

      +

      We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.

      +

      + +

      Examples

      +
      //Find x in R^6 such that:
      +
      +Aeq= [1,-1,1,0,3,1;
      +-1,0,-3,-4,5,6;
      +2,5,3,0,1,0];
      +beq=[1; 2; 3];
      +A= [0,1,0,1,2,-1;
      +-1,0,2,1,1,0];
      +b = [-1; 2.5];
      +lb=[-1000; -10000; 0; -1000; -1000; -1000];
      +ub=[10000; 100; 1.5; 100; 100; 1000];
      +x0 = repmat(0,6,1);
      +param = list("MaxIter", 300, "CpuTime", 100);
      +//and minimize 0.5*x'*Q*x + p'*x with
      +f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
      +[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param);
      +clear H f A b Aeq beq lb ub;
      + +

      Examples

      +
      //Find the value of x that minimize following function
      +// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
      +// Subject to:
      +// x1 + x2 ≤ 2
      +// –x1 + 2x2 ≤ 2
      +// 2x1 + x2 ≤ 3
      +// 0 ≤ x1, 0 ≤ x2.
      +H = [1 -1; -1 2];
      +f = [-2; -6];
      +A = [1 1; -1 2; 2 1];
      +b = [2; 2; 3];
      +lb = [0; 0];
      +ub = [%inf; %inf];
      +[xopt,fopt,exitflag,output,lambda] = qpipoptmat(H,f,A,b,[],[],lb,ub)
      + +

      Authors

      +
      • Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
      +
      + +
      + + + + + + +
      Report an issue
      + << qpipopt + + + Symphony Toolbox + + + symphony >> + +
      +
      +
      + + diff --git a/help/en_US/scilab_en_US_help/section_19f4f1e5726c01d683e8b82be0a7e910.html b/help/en_US/scilab_en_US_help/section_19f4f1e5726c01d683e8b82be0a7e910.html index ed07ab6..1e5e538 100644 --- a/help/en_US/scilab_en_US_help/section_19f4f1e5726c01d683e8b82be0a7e910.html +++ b/help/en_US/scilab_en_US_help/section_19f4f1e5726c01d683e8b82be0a7e910.html @@ -37,7 +37,7 @@ -
    • qpipopt_matSolves a linear quadratic problem.
    • +
    • qpipoptmatSolves a linear quadratic problem.
    • @@ -49,7 +49,7 @@ -
    • symphony_matSolves a mixed integer linear programming constrained optimization problem in intlinprog format.
    • +
    • symphonymatSolves a mixed integer linear programming constrained optimization problem in intlinprog format.
    • Symphony Native Functions
      • sym_addConstrAdd a new constraint
      • diff --git a/help/en_US/scilab_en_US_help/section_508f0b211d17ea6769714cc144e6b731.html b/help/en_US/scilab_en_US_help/section_508f0b211d17ea6769714cc144e6b731.html index 1d1b6d9..cf8c746 100644 --- a/help/en_US/scilab_en_US_help/section_508f0b211d17ea6769714cc144e6b731.html +++ b/help/en_US/scilab_en_US_help/section_508f0b211d17ea6769714cc144e6b731.html @@ -12,7 +12,7 @@
        - << symphony_mat + << symphonymat @@ -268,7 +268,7 @@
        Report an issue
        - << symphony_mat + << symphonymat diff --git a/help/en_US/scilab_en_US_help/symphony.html b/help/en_US/scilab_en_US_help/symphony.html index 0af9d1b..a1e3eea 100644 --- a/help/en_US/scilab_en_US_help/symphony.html +++ b/help/en_US/scilab_en_US_help/symphony.html @@ -12,7 +12,7 @@
        - << qpipopt_mat + << qpipoptmat @@ -20,7 +20,7 @@ - symphony_mat >> + symphonymat >>
        @@ -102,7 +102,7 @@ find the minimum or maximum of f(x) such that

        xopt = [1 1 0 1 7.25 0 0.25 3.5] fopt = [8495] // Calling Symphony -[x,f,iter] = symphony(8,3,c,isInt,lb,ub,conMatrix,conlb,conub,1);
    • +[x,f,status,output] = symphony(8,3,c,isInt,lb,ub,conMatrix,conlb,conub,1)

      Examples

      // An advanced case where we set some options in symphony
      @@ -177,7 +177,7 @@ find the minimum or maximum of f(x) such that

      conLB=repmat(0,nbCon,1); // Upper Bound of constraints conUB=[11927 13727 11551 13056 13460 ]'; -options = ["time_limit" "25"] +options = list("time_limit", 25); // The expected solution : // Output variables xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 .. @@ -186,7 +186,7 @@ find the minimum or maximum of f(x) such that

      // Optimal value fopt = [ 24381 ] // Calling Symphony -[x,f,iter]= symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options)
      +[x,f,status,output] = symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options)

      Authors

      • Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
      @@ -197,7 +197,7 @@ find the minimum or maximum of f(x) such that

      Report an issue - << qpipopt_mat + << qpipoptmat @@ -205,7 +205,7 @@ find the minimum or maximum of f(x) such that

      - symphony_mat >> + symphonymat >> diff --git a/help/en_US/scilab_en_US_help/symphonymat.html b/help/en_US/scilab_en_US_help/symphonymat.html new file mode 100644 index 0000000..23ff2c6 --- /dev/null +++ b/help/en_US/scilab_en_US_help/symphonymat.html @@ -0,0 +1,201 @@ + + + symphonymat + + + + + + + + Symphony Toolbox >> Symphony Toolbox > symphonymat + +

      +

      symphonymat

      +

      Solves a mixed integer linear programming constrained optimization problem in intlinprog format.

      + + +

      Calling Sequence

      +
      xopt = symphonymat(f,intcon,A,b)
      +xopt = symphonymat(f,intcon,A,b,Aeq,beq)
      +xopt = symphonymat(f,intcon,A,b,Aeq,beq,lb,ub)
      +xopt = symphonymat(f,intcon,A,b,Aeq,beq,lb,ub,options)
      +[xopt,fopt,status,output] = symphonymat( ... )
      + +

      Parameters

      +
      f : +

      a 1xn matrix of doubles, where n is number of variables, contains coefficients of the variables in the objective

      +
      intcon : +

      Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable

      +
      A : +

      Linear inequality constraint matrix, specified as a matrix of doubles. A represents the linear coefficients in the constraints A*x ≤ b. A has size M-by-N, where M is the number of constraints and N is number of variables

      +
      b : +

      Linear inequality constraint vector, specified as a vector of doubles. b represents the constant vector in the constraints A*x ≤ b. b has length M, where A is M-by-N

      +
      Aeq : +

      Linear equality constraint matrix, specified as a matrix of doubles. Aeq represents the linear coefficients in the constraints Aeq*x = beq. Aeq has size Meq-by-N, where Meq is the number of constraints and N is number of variables

      +
      beq : +

      Linear equality constraint vector, specified as a vector of doubles. beq represents the constant vector in the constraints Aeq*x = beq. beq has length Meq, where Aeq is Meq-by-N.

      +
      lb : +

      Lower bounds, specified as a vector or array of doubles. lb represents the lower bounds elementwise in lb ≤ x ≤ ub.

      +
      ub : +

      Upper bounds, specified as a vector or array of doubles. ub represents the upper bounds elementwise in lb ≤ x ≤ ub.

      +
      options : +

      a list containing the the parameters to be set.

      +
      xopt : +

      a 1xn matrix of doubles, the computed solution of the optimization problem

      +
      fopt : +

      a 1x1 matrix of doubles, the function value at x

      +
      output : +

      The output data structure contains detailed informations about the optimization process.

      + +

      Description

      +

      Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by : +find the minimum or maximum of f(x) such that

      +

      +

      We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by ​Ted Ralphs, ​Menal Guzelsoy and ​Ashutosh Mahajan.

      +

      + +

      Examples

      +
      // Objective function
      +c = [350*5,330*3,310*4,280*6,500,450,400,100]
      +// Lower Bound of variable
      +lb = repmat(0,1,8);
      +// Upper Bound of variables
      +ub = [repmat(1,1,4) repmat(%inf,1,4)];
      +// Constraint Matrix
      +Aeq = [5,3,4,6,1,1,1,1;
      +5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
      +5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09;]
      +beq = [ 25, 1.25, 1.25]
      +intcon = [1 2 3 4];
      +// Calling Symphony
      +[x,f,status,output] = symphonymat(c,intcon,[],[],Aeq,beq,lb,ub)
      + +

      Examples

      +
      // An advanced case where we set some options in symphony
      +// This problem is taken from
      +// P.C.Chu and J.E.Beasley
      +// "A genetic algorithm for the multidimensional knapsack problem",
      +// Journal of Heuristics, vol. 4, 1998, pp63-86.
      +// The problem to be solved is:
      +// Max  sum{j=1,...,n} p(j)x(j)
      +// st   sum{j=1,...,n} r(i,j)x(j) <= b(i)       i=1,...,m
      +//                     x(j)=0 or 1
      +// The function to be maximize i.e. P(j)
      +objCoef = -1*[   504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
      +825 1002 860 615 540 797 616 660 707 866 647 746 1006 608 ..
      +877 900 573 788 484 853 942 630 591 630 640 1169 932 1034 ..
      +957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
      +959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
      +510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
      +1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]
      +//Constraint Matrix
      +conMatrix = [   //Constraint 1
      +42 41 523 215 819 551 69 193 582 375 367 478 162 898 ..
      +550 553 298 577 493 183 260 224 852 394 958 282 402 604 ..
      +164 308 218 61 273 772 191 117 276 877 415 873 902 465 ..
      +320 870 244 781 86 622 665 155 680 101 665 227 597 354 ..
      +597 79 162 998 849 136 112 751 735 884 71 449 266 420 ..
      +797 945 746 46 44 545 882 72 383 714 987 183 731 301 ..
      +718 91 109 567 708 507 983 808 766 615 554 282 995 946 651 298;
      +//Constraint 2
      +509 883 229 569 706 639 114 727 491 481 681 948 687 941 ..
      +350 253 573 40 124 384 660 951 739 329 146 593 658 816 ..
      +638 717 779 289 430 851 937 289 159 260 930 248 656 833 ..
      +892 60 278 741 297 967 86 249 354 614 836 290 893 857 ..
      +158 869 206 504 799 758 431 580 780 788 583 641 32 653 ..
      +252 709 129 368 440 314 287 854 460 594 512 239 719 751 ..
      +708 670 269 832 137 356 960 651 398 893 407 477 552 805 881 850;
      +//Constraint 3
      +806 361 199 781 596 669 957 358 259 888 319 751 275 177 ..
      +883 749 229 265 282 694 819 77 190 551 140 442 867 283 ..
      +137 359 445 58 440 192 485 744 844 969 50 833 57 877 ..
      +482 732 968 113 486 710 439 747 174 260 877 474 841 422 ..
      +280 684 330 910 791 322 404 403 519 148 948 414 894 147 ..
      +73 297 97 651 380 67 582 973 143 732 624 518 847 113 ..
      +382 97 905 398 859 4 142 110 11 213 398 173 106 331 254 447 ;
      +//Constraint 4
      +404 197 817 1000 44 307 39 659 46 334 448 599 931 776 ..
      +263 980 807 378 278 841 700 210 542 636 388 129 203 110 ..
      +817 502 657 804 662 989 585 645 113 436 610 948 919 115 ..
      +967 13 445 449 740 592 327 167 368 335 179 909 825 614 ..
      +987 350 179 415 821 525 774 283 427 275 659 392 73 896 ..
      +68 982 697 421 246 672 649 731 191 514 983 886 95 846 ..
      +689 206 417 14 735 267 822 977 302 687 118 990 323 993 525 322;
      +//Constrain 5
      +475 36 287 577 45 700 803 654 196 844 657 387 518 143 ..
      +515 335 942 701 332 803 265 922 908 139 995 845 487 100 ..
      +447 653 649 738 424 475 425 926 795 47 136 801 904 740 ..
      +768 460 76 660 500 915 897 25 716 557 72 696 653 933 ..
      +420 582 810 861 758 647 237 631 271 91 75 756 409 440 ..
      +483 336 765 637 981 980 202 35 594 689 602 76 767 693 ..
      +893 160 785 311 417 748 375 362 617 553 474 915 457 261 350 635 ;
      +];
      +nbVar = size(objCoef,2)
      +conUB=[11927 13727 11551 13056 13460 ];
      +// Lower Bound of variables
      +lb = repmat(0,1,nbVar)
      +// Upper Bound of variables
      +ub = repmat(1,1,nbVar)
      +// Lower Bound of constrains
      +intcon = []
      +for i = 1:nbVar
      +intcon = [intcon i];
      +end
      +options = list("time_limit", 25);
      +// The expected solution :
      +// Output variables
      +xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 ..
      +0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 ..
      +0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0]
      +// Optimal value
      +fopt = [ 24381 ]
      +// Calling Symphony
      +[x,f,status,output] = symphonymat(objCoef,intcon,conMatrix,conUB,[],[],lb,ub,options);
      + +

      Authors

      +
      • Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
      +
      + + + + diff --git a/help/en_US/symphony.xml b/help/en_US/symphony.xml index 86ad4b7..c33b95c 100644 --- a/help/en_US/symphony.xml +++ b/help/en_US/symphony.xml @@ -114,7 +114,8 @@ isInt = [repmat(%t,1,4) repmat(%f,1,4)]; xopt = [1 1 0 1 7.25 0 0.25 3.5] fopt = [8495] // Calling Symphony -[x,f,iter] = symphony(8,3,c,isInt,lb,ub,conMatrix,conlb,conub,1); +[x,f,status,output] = symphony(8,3,c,isInt,lb,ub,conMatrix,conlb,conub,1) + ]]> @@ -193,7 +194,7 @@ isInt = repmat(%t,1,nbVar) conLB=repmat(0,nbCon,1); // Upper Bound of constraints conUB=[11927 13727 11551 13056 13460 ]'; -options = ["time_limit" "25"] +options = list("time_limit", 25); // The expected solution : // Output variables xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 .. @@ -202,7 +203,7 @@ xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 .. // Optimal value fopt = [ 24381 ] // Calling Symphony -[x,f,iter]= symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options) +[x,f,status,output] = symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options) ]]> diff --git a/help/en_US/symphonymat.xml b/help/en_US/symphonymat.xml new file mode 100644 index 0000000..ca56363 --- /dev/null +++ b/help/en_US/symphonymat.xml @@ -0,0 +1,203 @@ + + + + + + + + symphonymat + Solves a mixed integer linear programming constrained optimization problem in intlinprog format. + + + + + Calling Sequence + + xopt = symphonymat(f,intcon,A,b) + xopt = symphonymat(f,intcon,A,b,Aeq,beq) + xopt = symphonymat(f,intcon,A,b,Aeq,beq,lb,ub) + xopt = symphonymat(f,intcon,A,b,Aeq,beq,lb,ub,options) + [xopt,fopt,status,output] = symphonymat( ... ) + + + + + + Parameters + + f : + a 1xn matrix of doubles, where n is number of variables, contains coefficients of the variables in the objective + intcon : + Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable + A : + Linear inequality constraint matrix, specified as a matrix of doubles. A represents the linear coefficients in the constraints A*x ≤ b. A has size M-by-N, where M is the number of constraints and N is number of variables + b : + Linear inequality constraint vector, specified as a vector of doubles. b represents the constant vector in the constraints A*x ≤ b. b has length M, where A is M-by-N + Aeq : + Linear equality constraint matrix, specified as a matrix of doubles. Aeq represents the linear coefficients in the constraints Aeq*x = beq. Aeq has size Meq-by-N, where Meq is the number of constraints and N is number of variables + beq : + Linear equality constraint vector, specified as a vector of doubles. beq represents the constant vector in the constraints Aeq*x = beq. beq has length Meq, where Aeq is Meq-by-N. + lb : + Lower bounds, specified as a vector or array of doubles. lb represents the lower bounds elementwise in lb ≤ x ≤ ub. + ub : + Upper bounds, specified as a vector or array of doubles. ub represents the upper bounds elementwise in lb ≤ x ≤ ub. + options : + a list containing the the parameters to be set. + xopt : + a 1xn matrix of doubles, the computed solution of the optimization problem + fopt : + a 1x1 matrix of doubles, the function value at x + output : + The output data structure contains detailed informations about the optimization process. + + + + + Description + +Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by : +find the minimum or maximum of f(x) such that + + + +\begin{eqnarray} +&\mbox{min}_{x} +& f(x) \\ +& \text{subject to} & conLB \leq C(x) \leq conUB \\ +& & lb \leq x \leq ub \\ +\end{eqnarray} + + + +We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by ​Ted Ralphs, ​Menal Guzelsoy and ​Ashutosh Mahajan. + + + + + + + Examples + + + + + Examples + + + + + Authors + + Keyur Joshi, Saikiran, Iswarya, Harpreet Singh + + + -- cgit