From eb9ca1191c94059cd7adcf69805906c809fe9712 Mon Sep 17 00:00:00 2001 From: Harpreet Date: Tue, 29 Dec 2015 00:38:48 +0530 Subject: Bugs fixed 4 --- help/en_US/scilab_en_US_help/qpipopt.html | 40 +++++++++++++++---------------- 1 file changed, 20 insertions(+), 20 deletions(-) (limited to 'help/en_US/scilab_en_US_help/qpipopt.html') diff --git a/help/en_US/scilab_en_US_help/qpipopt.html b/help/en_US/scilab_en_US_help/qpipopt.html index d4b6b3c..349bbc4 100644 --- a/help/en_US/scilab_en_US_help/qpipopt.html +++ b/help/en_US/scilab_en_US_help/qpipopt.html @@ -37,9 +37,9 @@
xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB) -xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB,x0) -xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB,x0,param) +xopt = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB) +xopt = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB,x0) +xopt = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB,x0,param) [xopt,fopt,exitflag,output,lamda] = qpipopt( ... )
a double, number of variables
a double, number of constraints
a symmetric matrix of double, represents coefficients of quadratic in the quadratic problem.
a vector of double, represents coefficients of linear in the quadratic problem
a vector of double, contains lower bounds of the variables.
a vector of double, contains upper bounds of the variables.
a matrix of double, contains matrix representing the constraint matrix
a vector of double, contains lower bounds of the constraints.
a double, the function value at x.
Integer identifying the reason the algorithm terminated.
Integer identifying the reason the algorithm terminated. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the qpipopt macro.
Structure containing information about the optimization. Right now it contains number of iteration.
Structure containing information about the optimization. This version only contains number of iterations
Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.
Search the minimum of a constrained linear quadratic optimization problem specified by : find the minimum of f(x) such that
-We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++.
+The routine calls Ipopt for solving the quadratic problem, Ipopt is a library written in C++.
//Find x in R^6 such that: -conMatrix= [1,-1,1,0,3,1; +A= [1,-1,1,0,3,1; -1,0,-3,-4,5,6; 2,5,3,0,1,0 0,1,0,1,2,-1; @@ -94,13 +94,13 @@ find the minimum of f(x) such that conUB = [1;2;3;-1;2.5]; lb=[-1000;-10000; 0; -1000; -1000; -1000]; ub=[10000; 100; 1.5; 100; 100; 1000]; -//and minimize 0.5*x'*Q*x + p'*x with -p=[1; 2; 3; 4; 5; 6]; Q=eye(6,6); +//and minimize 0.5*x'⋅H⋅x + f'⋅x with +f=[1; 2; 3; 4; 5; 6]; H=eye(6,6); nbVar = 6; nbCon = 5; x0 = repmat(0,nbVar,1); param = list("MaxIter", 300, "CpuTime", 100); -[xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB,x0,param) +[xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB,x0,param) // Press ENTER to continue | ![]() | ![]() |