summaryrefslogtreecommitdiff
path: root/macros
diff options
context:
space:
mode:
Diffstat (limited to 'macros')
-rw-r--r--macros/lsqlin.binbin51508 -> 52068 bytes
-rw-r--r--macros/lsqlin.sci25
-rw-r--r--macros/lsqnonneg.binbin23408 -> 23608 bytes
-rw-r--r--macros/lsqnonneg.sci13
-rw-r--r--macros/qpipopt.binbin49368 -> 49652 bytes
-rw-r--r--macros/qpipopt.sci8
-rw-r--r--macros/qpipoptmat.binbin51224 -> 51408 bytes
-rw-r--r--macros/qpipoptmat.sci160
-rw-r--r--macros/symphony.binbin54708 -> 54824 bytes
-rw-r--r--macros/symphony.sci299
-rw-r--r--macros/symphonymat.binbin60820 -> 60900 bytes
-rw-r--r--macros/symphonymat.sci13
12 files changed, 259 insertions, 259 deletions
diff --git a/macros/lsqlin.bin b/macros/lsqlin.bin
index 801025f..d7fccb3 100644
--- a/macros/lsqlin.bin
+++ b/macros/lsqlin.bin
Binary files differ
diff --git a/macros/lsqlin.sci b/macros/lsqlin.sci
index 4a5fa2d..1dc1fd5 100644
--- a/macros/lsqlin.sci
+++ b/macros/lsqlin.sci
@@ -14,11 +14,11 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin (varargin)
// Solves a linear quadratic problem.
//
// Calling Sequence
- // x = lsqlin(C,d,A,b)
- // x = lsqlin(C,d,A,b,Aeq,beq)
- // x = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
- // x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
- // x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,param)
+ // xopt = lsqlin(C,d,A,b)
+ // xopt = lsqlin(C,d,A,b,Aeq,beq)
+ // xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
+ // xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
+ // xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,param)
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin( ... )
//
// Parameters
@@ -36,8 +36,8 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin (varargin)
// resnorm : a double, objective value returned as the scalar value norm(C*x-d)^2.
// residual : a vector of doubles, solution residuals returned as the vector C*x-d.
// exitflag : Integer identifying the reason the algorithm terminated.
- // output : Structure containing information about the optimization.
- // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
+ // output : Structure containing information about the optimization. Right now it contains number of iteration.
+ // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.
//
// Description
// Search the minimum of a constrained linear least square problem specified by :
@@ -46,13 +46,13 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin (varargin)
// \begin{eqnarray}
// &\mbox{min}_{x}
// & 1/2||C*x - d||_2^2 \\
- // & \text{subject to} & A.x \leq b \\
- // & & Aeq.x \leq beq \\
+ // & \text{subject to} & A*x \leq b \\
+ // & & Aeq*x = beq \\
// & & lb \leq x \leq ub \\
// \end{eqnarray}
// </latex>
//
- // We are calling IPOpt for solving the linear least square problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
+ // We are calling IPOpt for solving the linear least square problem, IPOpt is a library written in C++.
//
// Examples
// //A simple linear least square example
@@ -73,8 +73,10 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin (varargin)
// 0.2026
// 0.6721];
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b)
+ // // Press ENTER to continue
//
- // Examples
+ // Examples
+ // //A basic example for equality, inequality and bounds
// C = [0.9501 0.7620 0.6153 0.4057
// 0.2311 0.4564 0.7919 0.9354
// 0.6068 0.0185 0.9218 0.9169
@@ -96,7 +98,6 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin (varargin)
// lb = -0.1*ones(4,1);
// ub = 2*ones(4,1);
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
- //
// Authors
// Harpreet Singh
diff --git a/macros/lsqnonneg.bin b/macros/lsqnonneg.bin
index cd8a04a..84e307b 100644
--- a/macros/lsqnonneg.bin
+++ b/macros/lsqnonneg.bin
Binary files differ
diff --git a/macros/lsqnonneg.sci b/macros/lsqnonneg.sci
index 77e5e44..b8694b4 100644
--- a/macros/lsqnonneg.sci
+++ b/macros/lsqnonneg.sci
@@ -14,8 +14,8 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg (varargin)
// Solves nonnegative least-squares curve fitting problems.
//
// Calling Sequence
- // x = lsqnonneg(C,d)
- // x = lsqnonneg(C,d,param)
+ // xopt = lsqnonneg(C,d)
+ // xopt = lsqnonneg(C,d,param)
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg( ... )
//
// Parameters
@@ -25,8 +25,8 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg (varargin)
// resnorm : a double, objective value returned as the scalar value norm(C*x-d)^2.
// residual : a vector of doubles, solution residuals returned as the vector C*x-d.
// exitflag : Integer identifying the reason the algorithm terminated.
- // output : Structure containing information about the optimization.
- // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
+ // output : Structure containing information about the optimization. Right now it contains number of iteration.
+ // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.
//
// Description
// Solves nonnegative least-squares curve fitting problems specified by :
@@ -39,10 +39,10 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg (varargin)
// \end{eqnarray}
// </latex>
//
- // We are calling IPOpt for solving the nonnegative least-squares curve fitting problems, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
+ // We are calling IPOpt for solving the nonnegative least-squares curve fitting problems, IPOpt is a library written in C++.
//
// Examples
- // A basic lsqnonneg problem
+ // // A basic lsqnonneg problem
// C = [
// 0.0372 0.2869
// 0.6861 0.7071
@@ -54,7 +54,6 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg (varargin)
// 0.0747
// 0.8405];
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d)
- //
// Authors
// Harpreet Singh
diff --git a/macros/qpipopt.bin b/macros/qpipopt.bin
index 2fd432e..584f327 100644
--- a/macros/qpipopt.bin
+++ b/macros/qpipopt.bin
Binary files differ
diff --git a/macros/qpipopt.sci b/macros/qpipopt.sci
index 8b7cecd..affd061 100644
--- a/macros/qpipopt.sci
+++ b/macros/qpipopt.sci
@@ -34,8 +34,8 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
// xopt : a vector of doubles, the computed solution of the optimization problem.
// fopt : a double, the function value at x.
// exitflag : Integer identifying the reason the algorithm terminated.
- // output : Structure containing information about the optimization.
- // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
+ // output : Structure containing information about the optimization. Right now it contains number of iteration.
+ // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.
//
// Description
// Search the minimum of a constrained linear quadratic optimization problem specified by :
@@ -50,7 +50,7 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
// \end{eqnarray}
// </latex>
//
- // We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
+ // We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++.
//
// Examples
// //Find x in R^6 such that:
@@ -70,6 +70,7 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
// x0 = repmat(0,nbVar,1);
// param = list("MaxIter", 300, "CpuTime", 100);
// [xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB,x0,param)
+ // // Press ENTER to continue
//
// Examples
// //Find the value of x that minimize following function
@@ -89,7 +90,6 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
// nbVar = 2;
// nbCon = 3;
// [xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
- //
// Authors
// Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
diff --git a/macros/qpipoptmat.bin b/macros/qpipoptmat.bin
index 7a37d9a..ad893f2 100644
--- a/macros/qpipoptmat.bin
+++ b/macros/qpipoptmat.bin
Binary files differ
diff --git a/macros/qpipoptmat.sci b/macros/qpipoptmat.sci
index 3f58e70..eec93ce 100644
--- a/macros/qpipoptmat.sci
+++ b/macros/qpipoptmat.sci
@@ -11,87 +11,85 @@
function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin)
- // Solves a linear quadratic problem.
- //
- // Calling Sequence
- // x = qpipoptmat(H,f)
- // x = qpipoptmat(H,f,A,b)
- // x = qpipoptmat(H,f,A,b,Aeq,beq)
- // x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub)
- // x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0)
- // x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param)
- // [xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... )
- //
- // Parameters
- // H : a symmetric matrix of doubles, represents coefficients of quadratic in the quadratic problem.
- // f : a vector of doubles, represents coefficients of linear in the quadratic problem
- // A : a vector of doubles, represents the linear coefficients in the inequality constraints
- // b : a vector of doubles, represents the linear coefficients in the inequality constraints
- // Aeq : a matrix of doubles, represents the linear coefficients in the equality constraints
- // beq : a vector of doubles, represents the linear coefficients in the equality constraints
- // LB : a vector of doubles, contains lower bounds of the variables.
- // UB : a vector of doubles, contains upper bounds of the variables.
- // x0 : a vector of doubles, contains initial guess of variables.
- // param : a list containing the the parameters to be set.
- // xopt : a vector of doubles, the computed solution of the optimization problem.
- // fopt : a double, the function value at x.
- // exitflag : Integer identifying the reason the algorithm terminated.
- // output : Structure containing information about the optimization.
- // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
- //
- // Description
- // Search the minimum of a constrained linear quadratic optimization problem specified by :
- // find the minimum of f(x) such that
- //
- // <latex>
- // \begin{eqnarray}
- // &\mbox{min}_{x}
- // & 1/2*x'*H*x + f'*x \\
- // & \text{subject to} & A.x \leq b \\
- // & & Aeq.x \leq beq \\
- // & & lb \leq x \leq ub \\
- // \end{eqnarray}
- // </latex>
- //
- // We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
- //
- // Examples
- // //Find x in R^6 such that:
- //
- // Aeq= [1,-1,1,0,3,1;
- // -1,0,-3,-4,5,6;
- // 2,5,3,0,1,0];
- // beq=[1; 2; 3];
- // A= [0,1,0,1,2,-1;
- // -1,0,2,1,1,0];
- // b = [-1; 2.5];
- // lb=[-1000; -10000; 0; -1000; -1000; -1000];
- // ub=[10000; 100; 1.5; 100; 100; 1000];
- // x0 = repmat(0,6,1);
- // param = list("MaxIter", 300, "CpuTime", 100);
- // //and minimize 0.5*x'*Q*x + p'*x with
- // f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
- // [xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param)
- // clear H f A b Aeq beq lb ub;
- //
- // Examples
- // //Find the value of x that minimize following function
- // // f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
- // // Subject to:
- // // x1 + x2 ≤ 2
- // // –x1 + 2x2 ≤ 2
- // // 2x1 + x2 ≤ 3
- // // 0 ≤ x1, 0 ≤ x2.
- // H = [1 -1; -1 2];
- // f = [-2; -6];
- // A = [1 1; -1 2; 2 1];
- // b = [2; 2; 3];
- // lb = [0; 0];
- // ub = [%inf; %inf];
- // [xopt,fopt,exitflag,output,lambda] = qpipoptmat(H,f,A,b,[],[],lb,ub)
- //
- // Authors
- // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
+ // Solves a linear quadratic problem.
+ //
+ // Calling Sequence
+ // xopt = qpipoptmat(H,f)
+ // xopt = qpipoptmat(H,f,A,b)
+ // xopt = qpipoptmat(H,f,A,b,Aeq,beq)
+ // xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub)
+ // xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0)
+ // xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param)
+ // [xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... )
+ //
+ // Parameters
+ // H : a symmetric matrix of doubles, represents coefficients of quadratic in the quadratic problem.
+ // f : a vector of doubles, represents coefficients of linear in the quadratic problem
+ // A : a vector of doubles, represents the linear coefficients in the inequality constraints
+ // b : a vector of doubles, represents the linear coefficients in the inequality constraints
+ // Aeq : a matrix of doubles, represents the linear coefficients in the equality constraints
+ // beq : a vector of doubles, represents the linear coefficients in the equality constraints
+ // LB : a vector of doubles, contains lower bounds of the variables.
+ // UB : a vector of doubles, contains upper bounds of the variables.
+ // x0 : a vector of doubles, contains initial guess of variables.
+ // param : a list containing the the parameters to be set.
+ // xopt : a vector of doubles, the computed solution of the optimization problem.
+ // fopt : a double, the function value at x.
+ // exitflag : Integer identifying the reason the algorithm terminated.
+ // output : Structure containing information about the optimization. Right now it contains number of iteration.
+ // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.
+ //
+ // Description
+ // Search the minimum of a constrained linear quadratic optimization problem specified by :
+ // find the minimum of f(x) such that
+ //
+ // <latex>
+ // \begin{eqnarray}
+ // &\mbox{min}_{x}
+ // & 1/2*x'*H*x + f'*x \\
+ // & \text{subject to} & A*x \leq b \\
+ // & & Aeq*x = beq \\
+ // & & lb \leq x \leq ub \\
+ // \end{eqnarray}
+ // </latex>
+ //
+ // We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++.
+ //
+ // Examples
+ // //Find the value of x that minimize following function
+ // // f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
+ // // Subject to:
+ // // x1 + x2 ≤ 2
+ // // –x1 + 2x2 ≤ 2
+ // // 2x1 + x2 ≤ 3
+ // // 0 ≤ x1, 0 ≤ x2.
+ // H = [1 -1; -1 2];
+ // f = [-2; -6];
+ // A = [1 1; -1 2; 2 1];
+ // b = [2; 2; 3];
+ // lb = [0; 0];
+ // ub = [%inf; %inf];
+ // [xopt,fopt,exitflag,output,lambda] = qpipoptmat(H,f,A,b,[],[],lb,ub)
+ // // Press ENTER to continue
+ //
+ // Examples
+ // //Find x in R^6 such that:
+ // Aeq= [1,-1,1,0,3,1;
+ // -1,0,-3,-4,5,6;
+ // 2,5,3,0,1,0];
+ // beq=[1; 2; 3];
+ // A= [0,1,0,1,2,-1;
+ // -1,0,2,1,1,0];
+ // b = [-1; 2.5];
+ // lb=[-1000; -10000; 0; -1000; -1000; -1000];
+ // ub=[10000; 100; 1.5; 100; 100; 1000];
+ // x0 = repmat(0,6,1);
+ // param = list("MaxIter", 300, "CpuTime", 100);
+ // //and minimize 0.5*x'*Q*x + p'*x with
+ // f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
+ // [xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param)
+ // Authors
+ // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
//To check the number of input and output argument
diff --git a/macros/symphony.bin b/macros/symphony.bin
index 3dab926..4bca695 100644
--- a/macros/symphony.bin
+++ b/macros/symphony.bin
Binary files differ
diff --git a/macros/symphony.sci b/macros/symphony.sci
index eba9e64..b1a6f28 100644
--- a/macros/symphony.sci
+++ b/macros/symphony.sci
@@ -10,155 +10,156 @@
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
function [xopt,fopt,status,output] = symphony (varargin)
- // Solves a mixed integer linear programming constrained optimization problem.
- //
- // Calling Sequence
- // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB)
- // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense)
- // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense,options)
- // [xopt,fopt,status,output] = symphony( ... )
- //
- // Parameters
- // nbVar : a double, number of variables.
- // nbCon : a double, number of constraints.
- // objCoeff : a vector of doubles, represents coefficients of the variables in the objective.
- // isInt : a vector of boolean, represents wether a variable is constrained to be an integer.
- // LB : a vector of doubles, represents lower bounds of the variables.
- // UB : a vector of doubles, represents upper bounds of the variables.
- // conMatrix : a matrix of doubles, represents matrix representing the constraint matrix.
- // conLB : a vector of doubles, represents lower bounds of the constraints.
- // conUB : a vector of doubles, represents upper bounds of the constraints
- // objSense : The sense (maximization/minimization) of the objective. Use 1(sym_minimize ) or -1 (sym_maximize) here.
- // options : a a list containing the the parameters to be set.
- // xopt : a vector of doubles, the computed solution of the optimization problem.
- // fopt : a double, the function value at x.
- // status : status flag from symphony.
- // output : The output data structure contains detailed informations about the optimization process.
- //
- // Description
- // Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
- // find the minimum or maximum of f(x) such that
- //
- // <latex>
- // \begin{eqnarray}
- // &\mbox{min}_{x}
- // & f(x) \\
- // & \text{subject to} & conLB \leq C(x) \leq conUB \\
- // & & lb \leq x \leq ub \\
- // \end{eqnarray}
- // </latex>
- //
- // We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by ​Ted Ralphs, ​Menal Guzelsoy and ​Ashutosh Mahajan.
- //
- // Examples
- // //A basic case :
- // // Objective function
- // c = [350*5,330*3,310*4,280*6,500,450,400,100]';
- // // Lower Bound of variable
- // lb = repmat(0,8,1);
- // // Upper Bound of variables
- // ub = [repmat(1,4,1);repmat(%inf,4,1)];
- // // Constraint Matrix
- // conMatrix = [5,3,4,6,1,1,1,1;
- // 5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
- // 5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09;]
- // // Lower Bound of constrains
- // conlb = [ 25; 1.25; 1.25]
- // // Upper Bound of constrains
- // conub = [ 25; 1.25; 1.25]
- // // Row Matrix for telling symphony that the is integer or not
- // isInt = [repmat(%t,1,4) repmat(%f,1,4)];
- // xopt = [1 1 0 1 7.25 0 0.25 3.5]
- // fopt = [8495]
- // // Calling Symphony
- // [x,f,status,output] = symphony(8,3,c,isInt,lb,ub,conMatrix,conlb,conub,1)
- //
- // Examples
- // // An advanced case where we set some options in symphony
- // // This problem is taken from
- // // P.C.Chu and J.E.Beasley
- // // "A genetic algorithm for the multidimensional knapsack problem",
- // // Journal of Heuristics, vol. 4, 1998, pp63-86.
- // // The problem to be solved is:
- // // Max sum{j=1,...,n} p(j)x(j)
- // // st sum{j=1,...,n} r(i,j)x(j) <= b(i) i=1,...,m
- // // x(j)=0 or 1
- // // The function to be maximize i.e. P(j)
- // p = [ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
- // 825 1002 860 615 540 797 616 660 707 866 647 746 1006 608 ..
- // 877 900 573 788 484 853 942 630 591 630 640 1169 932 1034 ..
- // 957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
- // 959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
- // 510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
- // 1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]';
- // //Constraint Matrix
- // conMatrix = [
- // //Constraint 1
- // 42 41 523 215 819 551 69 193 582 375 367 478 162 898 ..
- // 550 553 298 577 493 183 260 224 852 394 958 282 402 604 ..
- // 164 308 218 61 273 772 191 117 276 877 415 873 902 465 ..
- // 320 870 244 781 86 622 665 155 680 101 665 227 597 354 ..
- // 597 79 162 998 849 136 112 751 735 884 71 449 266 420 ..
- // 797 945 746 46 44 545 882 72 383 714 987 183 731 301 ..
- // 718 91 109 567 708 507 983 808 766 615 554 282 995 946 651 298;
- // //Constraint 2
- // 509 883 229 569 706 639 114 727 491 481 681 948 687 941 ..
- // 350 253 573 40 124 384 660 951 739 329 146 593 658 816 ..
- // 638 717 779 289 430 851 937 289 159 260 930 248 656 833 ..
- // 892 60 278 741 297 967 86 249 354 614 836 290 893 857 ..
- // 158 869 206 504 799 758 431 580 780 788 583 641 32 653 ..
- // 252 709 129 368 440 314 287 854 460 594 512 239 719 751 ..
- // 708 670 269 832 137 356 960 651 398 893 407 477 552 805 881 850;
- // //Constraint 3
- // 806 361 199 781 596 669 957 358 259 888 319 751 275 177 ..
- // 883 749 229 265 282 694 819 77 190 551 140 442 867 283 ..
- // 137 359 445 58 440 192 485 744 844 969 50 833 57 877 ..
- // 482 732 968 113 486 710 439 747 174 260 877 474 841 422 ..
- // 280 684 330 910 791 322 404 403 519 148 948 414 894 147 ..
- // 73 297 97 651 380 67 582 973 143 732 624 518 847 113 ..
- // 382 97 905 398 859 4 142 110 11 213 398 173 106 331 254 447 ;
- // //Constraint 4
- // 404 197 817 1000 44 307 39 659 46 334 448 599 931 776 ..
- // 263 980 807 378 278 841 700 210 542 636 388 129 203 110 ..
- // 817 502 657 804 662 989 585 645 113 436 610 948 919 115 ..
- // 967 13 445 449 740 592 327 167 368 335 179 909 825 614 ..
- // 987 350 179 415 821 525 774 283 427 275 659 392 73 896 ..
- // 68 982 697 421 246 672 649 731 191 514 983 886 95 846 ..
- // 689 206 417 14 735 267 822 977 302 687 118 990 323 993 525 322;
- // //Constrain 5
- // 475 36 287 577 45 700 803 654 196 844 657 387 518 143 ..
- // 515 335 942 701 332 803 265 922 908 139 995 845 487 100 ..
- // 447 653 649 738 424 475 425 926 795 47 136 801 904 740 ..
- // 768 460 76 660 500 915 897 25 716 557 72 696 653 933 ..
- // 420 582 810 861 758 647 237 631 271 91 75 756 409 440 ..
- // 483 336 765 637 981 980 202 35 594 689 602 76 767 693 ..
- // 893 160 785 311 417 748 375 362 617 553 474 915 457 261 350 635 ;
- // ];
- // nbCon = size(conMatrix,1)
- // nbVar = size(conMatrix,2)
- // // Lower Bound of variables
- // lb = repmat(0,nbVar,1)
- // // Upper Bound of variables
- // ub = repmat(1,nbVar,1)
- // // Row Matrix for telling symphony that the is integer or not
- // isInt = repmat(%t,1,nbVar)
- // // Lower Bound of constrains
- // conLB=repmat(0,nbCon,1);
- // // Upper Bound of constraints
- // conUB=[11927 13727 11551 13056 13460 ]';
- // options = list("time_limit", 25);
- // // The expected solution :
- // // Output variables
- // xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 ..
- // 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 ..
- // 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0]
- // // Optimal value
- // fopt = [ 24381 ]
- // // Calling Symphony
- // [x,f,status,output] = symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options)
- //
- // Authors
- // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
+ // Solves a mixed integer linear programming constrained optimization problem.
+ //
+ // Calling Sequence
+ // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB)
+ // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense)
+ // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense,options)
+ // [xopt,fopt,status,output] = symphony( ... )
+ //
+ // Parameters
+ // nbVar : a double, number of variables.
+ // nbCon : a double, number of constraints.
+ // objCoeff : a vector of doubles, represents coefficients of the variables in the objective.
+ // isInt : a vector of boolean, represents wether a variable is constrained to be an integer.
+ // LB : a vector of doubles, represents lower bounds of the variables.
+ // UB : a vector of doubles, represents upper bounds of the variables.
+ // conMatrix : a matrix of doubles, represents matrix representing the constraint matrix.
+ // conLB : a vector of doubles, represents lower bounds of the constraints.
+ // conUB : a vector of doubles, represents upper bounds of the constraints
+ // objSense : The sense (maximization/minimization) of the objective. Use 1(sym_minimize ) or -1 (sym_maximize) here.
+ // options : a a list containing the the parameters to be set.
+ // xopt : a vector of doubles, the computed solution of the optimization problem.
+ // fopt : a double, the function value at x.
+ // status : status flag from symphony.
+ // output : The output data structure contains detailed informations about the optimization process. Right now it contains number of iteration.
+ //
+ // Description
+ // Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
+ // find the minimum or maximum of f(x) such that
+ //
+ // <latex>
+ // \begin{eqnarray}
+ // &\mbox{min}_{x}
+ // & f^T*x \\
+ // & \text{subject to} & conLB \leq C*x \leq conUB \\
+ // & & lb \leq x \leq ub \\
+ // & & x_i \in \!\, \mathbb{Z}, i \in \!\, I
+ // \end{eqnarray}
+ // </latex>
+ //
+ // We are calling SYMPHONY written in C by gateway files for the actual computation.
+ //
+ // Examples
+ // //A basic case :
+ // // Objective function
+ // c = [350*5,330*3,310*4,280*6,500,450,400,100]';
+ // // Lower Bound of variable
+ // lb = repmat(0,8,1);
+ // // Upper Bound of variables
+ // ub = [repmat(1,4,1);repmat(%inf,4,1)];
+ // // Constraint Matrix
+ // conMatrix = [5,3,4,6,1,1,1,1;
+ // 5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
+ // 5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09;]
+ // // Lower Bound of constrains
+ // conlb = [ 25; 1.25; 1.25]
+ // // Upper Bound of constrains
+ // conub = [ 25; 1.25; 1.25]
+ // // Row Matrix for telling symphony that the is integer or not
+ // isInt = [repmat(%t,1,4) repmat(%f,1,4)];
+ // xopt = [1 1 0 1 7.25 0 0.25 3.5]
+ // fopt = [8495]
+ // // Calling Symphony
+ // [x,f,status,output] = symphony(8,3,c,isInt,lb,ub,conMatrix,conlb,conub,1)
+ // // Press ENTER to continue
+ //
+ // Examples
+ // // An advanced case where we set some options in symphony
+ // // This problem is taken from
+ // // P.C.Chu and J.E.Beasley
+ // // "A genetic algorithm for the multidimensional knapsack problem",
+ // // Journal of Heuristics, vol. 4, 1998, pp63-86.
+ // // The problem to be solved is:
+ // // Max sum{j=1,...,n} p(j)x(j)
+ // // st sum{j=1,...,n} r(i,j)x(j) <= b(i) i=1,...,m
+ // // x(j)=0 or 1
+ // // The function to be maximize i.e. P(j)
+ // p = [ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
+ // 825 1002 860 615 540 797 616 660 707 866 647 746 1006 608 ..
+ // 877 900 573 788 484 853 942 630 591 630 640 1169 932 1034 ..
+ // 957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
+ // 959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
+ // 510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
+ // 1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]';
+ // //Constraint Matrix
+ // conMatrix = [
+ // //Constraint 1
+ // 42 41 523 215 819 551 69 193 582 375 367 478 162 898 ..
+ // 550 553 298 577 493 183 260 224 852 394 958 282 402 604 ..
+ // 164 308 218 61 273 772 191 117 276 877 415 873 902 465 ..
+ // 320 870 244 781 86 622 665 155 680 101 665 227 597 354 ..
+ // 597 79 162 998 849 136 112 751 735 884 71 449 266 420 ..
+ // 797 945 746 46 44 545 882 72 383 714 987 183 731 301 ..
+ // 718 91 109 567 708 507 983 808 766 615 554 282 995 946 651 298;
+ // //Constraint 2
+ // 509 883 229 569 706 639 114 727 491 481 681 948 687 941 ..
+ // 350 253 573 40 124 384 660 951 739 329 146 593 658 816 ..
+ // 638 717 779 289 430 851 937 289 159 260 930 248 656 833 ..
+ // 892 60 278 741 297 967 86 249 354 614 836 290 893 857 ..
+ // 158 869 206 504 799 758 431 580 780 788 583 641 32 653 ..
+ // 252 709 129 368 440 314 287 854 460 594 512 239 719 751 ..
+ // 708 670 269 832 137 356 960 651 398 893 407 477 552 805 881 850;
+ // //Constraint 3
+ // 806 361 199 781 596 669 957 358 259 888 319 751 275 177 ..
+ // 883 749 229 265 282 694 819 77 190 551 140 442 867 283 ..
+ // 137 359 445 58 440 192 485 744 844 969 50 833 57 877 ..
+ // 482 732 968 113 486 710 439 747 174 260 877 474 841 422 ..
+ // 280 684 330 910 791 322 404 403 519 148 948 414 894 147 ..
+ // 73 297 97 651 380 67 582 973 143 732 624 518 847 113 ..
+ // 382 97 905 398 859 4 142 110 11 213 398 173 106 331 254 447 ;
+ // //Constraint 4
+ // 404 197 817 1000 44 307 39 659 46 334 448 599 931 776 ..
+ // 263 980 807 378 278 841 700 210 542 636 388 129 203 110 ..
+ // 817 502 657 804 662 989 585 645 113 436 610 948 919 115 ..
+ // 967 13 445 449 740 592 327 167 368 335 179 909 825 614 ..
+ // 987 350 179 415 821 525 774 283 427 275 659 392 73 896 ..
+ // 68 982 697 421 246 672 649 731 191 514 983 886 95 846 ..
+ // 689 206 417 14 735 267 822 977 302 687 118 990 323 993 525 322;
+ // //Constrain 5
+ // 475 36 287 577 45 700 803 654 196 844 657 387 518 143 ..
+ // 515 335 942 701 332 803 265 922 908 139 995 845 487 100 ..
+ // 447 653 649 738 424 475 425 926 795 47 136 801 904 740 ..
+ // 768 460 76 660 500 915 897 25 716 557 72 696 653 933 ..
+ // 420 582 810 861 758 647 237 631 271 91 75 756 409 440 ..
+ // 483 336 765 637 981 980 202 35 594 689 602 76 767 693 ..
+ // 893 160 785 311 417 748 375 362 617 553 474 915 457 261 350 635 ;
+ // ];
+ // nbCon = size(conMatrix,1)
+ // nbVar = size(conMatrix,2)
+ // // Lower Bound of variables
+ // lb = repmat(0,nbVar,1)
+ // // Upper Bound of variables
+ // ub = repmat(1,nbVar,1)
+ // // Row Matrix for telling symphony that the is integer or not
+ // isInt = repmat(%t,1,nbVar)
+ // // Lower Bound of constrains
+ // conLB=repmat(0,nbCon,1);
+ // // Upper Bound of constraints
+ // conUB=[11927 13727 11551 13056 13460 ]';
+ // options = list("time_limit", 25);
+ // // The expected solution :
+ // // Output variables
+ // xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 ..
+ // 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 ..
+ // 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0]
+ // // Optimal value
+ // fopt = [ 24381 ]
+ // // Calling Symphony
+ // [x,f,status,output] = symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options);
+ // Authors
+ // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
//To check the number of input and output argument
[lhs , rhs] = argn();
diff --git a/macros/symphonymat.bin b/macros/symphonymat.bin
index 8d42926..08b1616 100644
--- a/macros/symphonymat.bin
+++ b/macros/symphonymat.bin
Binary files differ
diff --git a/macros/symphonymat.sci b/macros/symphonymat.sci
index 5aab6e5..40b07eb 100644
--- a/macros/symphonymat.sci
+++ b/macros/symphonymat.sci
@@ -32,7 +32,7 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// xopt : a vector of double, the computed solution of the optimization problem
// fopt : a doubles, the function value at x
// status : status flag from symphony.
- // output : The output data structure contains detailed informations about the optimization process.
+ // output : The output data structure contains detailed informations about the optimization process. Right now it contains number of iteration.
//
// Description
// Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
@@ -41,14 +41,15 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// <latex>
// \begin{eqnarray}
// &\mbox{min}_{x}
- // & f(x) \\
- // & \text{subject to} & A.x \leq b \\
- // & & Aeq.x \leq beq \\
+ // & f^T*x \\
+ // & \text{subject to} & A*x \leq b \\
+ // & & Aeq*x = beq \\
// & & lb \leq x \leq ub \\
+ // & & x_i \in \!\, \mathbb{Z}, i \in \!\, I
// \end{eqnarray}
// </latex>
//
- // We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by ​Ted Ralphs, ​Menal Guzelsoy and ​Ashutosh Mahajan.
+ // We are calling SYMPHONY written in C by gateway files for the actual computation.
//
// Examples
// // Objective function
@@ -65,6 +66,7 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// intcon = [1 2 3 4];
// // Calling Symphony
// [x,f,status,output] = symphonymat(c,intcon,[],[],Aeq,beq,lb,ub)
+ // // Press ENTER to continue
//
// Examples
// // An advanced case where we set some options in symphony
@@ -147,7 +149,6 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// fopt = [ 24381 ]
// // Calling Symphony
// [x,f,status,output] = symphonymat(objCoef,intcon,conMatrix,conUB,[],[],lb,ub,options);
- //
// Authors
// Keyur Joshi, Saikiran, Iswarya, Harpreet Singh