#+LaTeX_CLASS: beamer #+LaTeX_CLASS_OPTIONS: [presentation] #+BEAMER_FRAME_LEVEL: 1 #+BEAMER_HEADER_EXTRA: \usetheme{Warsaw}\usecolortheme{default}\useoutertheme{infolines}\setbeamercovered{transparent} #+COLUMNS: %45ITEM %10BEAMER_env(Env) %10BEAMER_envargs(Env Args) %4BEAMER_col(Col) %8BEAMER_extra(Extra) #+PROPERTY: BEAMER_col_ALL 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 :ETC #+LaTeX_CLASS: beamer #+LaTeX_CLASS_OPTIONS: [presentation] #+LaTeX_HEADER: \usepackage[english]{babel} \usepackage{ae,aecompl} #+LaTeX_HEADER: \usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet} #+LaTeX_HEADER: \usepackage{listings} #+LaTeX_HEADER:\lstset{language=Python, basicstyle=\ttfamily\bfseries, #+LaTeX_HEADER: commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen}, #+LaTeX_HEADER: showstringspaces=false, keywordstyle=\color{blue}\bfseries} #+TITLE: #+AUTHOR: FOSSEE #+EMAIL: #+DATE: #+DESCRIPTION: #+KEYWORDS: #+LANGUAGE: en #+OPTIONS: H:3 num:nil toc:nil \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t #+OPTIONS: TeX:t LaTeX:nil skip:nil d:nil todo:nil pri:nil tags:not-in-toc * #+begin_latex \begin{center} \vspace{12pt} \textcolor{blue}{\huge Least Square Fit} \end{center} \vspace{18pt} \begin{center} \vspace{10pt} \includegraphics[scale=0.95]{../images/fossee-logo.png}\\ \vspace{5pt} \scriptsize Developed by FOSSEE Team, IIT-Bombay. \\ \scriptsize Funded by National Mission on Education through ICT\\ \scriptsize MHRD,Govt. of India\\ \includegraphics[scale=0.30]{../images/iitb-logo.png}\\ \end{center} #+end_latex * Objectives At the end of this tutorial, you will be able to, - Generate the least square fit line for a given set of points. * Pre-requisite Spoken tutorial on - - Using plot interactively. - Loading data from files. - Getting started with arrays. * Exercise 1 - Generate a least square fit line for l v/s t^2 using the data in the file 'pendulum.txt'. * Summary In this tutorial,we have learnt to, - Generate a least square fit using matrices. - Use the function ``lstsq()`` to generate a least square fit line. * Evaluation 1. What does ones_like([1, 2, 3]) produce - array([1, 1, 1]) - [1, 1, 1] - [1.0, 1.0, 1.0] - Error 2. The plot of ``u`` vs ``v`` is a bunch of scattered points that show a linear trend. How do you find the least square fit line of ``u`` v/s ``v``. * Solutions 1. array([1, 1, 1]) 2. A = array(u, ones\_like(u)).T result = lstsq(A, v) m, c = result[ 0 ] lst\_line = m * u + c * #+begin_latex \begin{block}{} \begin{center} \textcolor{blue}{\Large THANK YOU!} \end{center} \end{block} \begin{block}{} \begin{center} For more Information, visit our website\\ \url{http://fossee.in/} \end{center} \end{block} #+end_latex