diff options
author | Shantanu Choudhary | 2010-04-19 15:12:54 +0530 |
---|---|---|
committer | Shantanu Choudhary | 2010-04-19 15:12:54 +0530 |
commit | 38b7f8ac1876bc7ba9ee66625d8b58438eb46acc (patch) | |
tree | c1d9de2edd3ca1a0d1d2113f579fcb3c110085a3 | |
parent | 3d6f943548c5ba17b6146853ac5faa585a74f28f (diff) | |
download | st-scripts-38b7f8ac1876bc7ba9ee66625d8b58438eb46acc.tar.gz st-scripts-38b7f8ac1876bc7ba9ee66625d8b58438eb46acc.tar.bz2 st-scripts-38b7f8ac1876bc7ba9ee66625d8b58438eb46acc.zip |
Added changes to ode presentation.
-rw-r--r-- | presentations/ode.tex | 30 |
1 files changed, 28 insertions, 2 deletions
diff --git a/presentations/ode.tex b/presentations/ode.tex index 655a58f..db2c1d5 100644 --- a/presentations/ode.tex +++ b/presentations/ode.tex @@ -78,13 +78,39 @@ Solving ordinary differential equations. \begin{block}{Prerequisite} \begin{itemize} \item Understanding of Arrays. - \item Python functions. - \item lists. + \item functions and lists \end{itemize} \end{block} \end{frame} \begin{frame}[fragile] +\frametitle{Solving ODEs using SciPy} +\begin{itemize} +\item Let's consider the spread of an epidemic in a population +\item $\frac{dy}{dt} = ky(L-y)$ gives the spread of the disease +\item L is the total population. +\item Use L = 25000, k = 0.00003, y(0) = 250 +\end{itemize} +\end{frame} + +\begin{frame}[fragile] +\frametitle{ODEs - Simple Pendulum} +We shall use the simple ODE of a simple pendulum. +\begin{equation*} +\ddot{\theta} = -\frac{g}{L}sin(\theta) +\end{equation*} +\begin{itemize} +\item This equation can be written as a system of two first order ODEs +\end{itemize} +\begin{align} +\dot{\theta} &= \omega \\ +\dot{\omega} &= -\frac{g}{L}sin(\theta) \\ + \text{At}\ t &= 0 : \nonumber \\ + \theta = \theta_0(10^o)\quad & \&\quad \omega = 0\ (Initial\ values)\nonumber +\end{align} +\end{frame} + +\begin{frame}[fragile] \frametitle{Summary} \begin{block}{} Solving ordinary differential equations |