1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) INRIA - 1989 - G. Le Vey
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
function [P,R,T]=lindquist(n,H,F,G,R0)
//[Pn,Rn,Tn]=lindquist(n,H,F,G,R0)
//macro which computes iteratively the minimal solution of the algebraic
//Riccati equation and gives the matrices Rn and Tt of the filter model,
//by the lindquist algorithm.
// n : number of iterations.
// H,F,G : estimated triple from the covariance sequence of y.
// R0 : E(yk*yk')
// Pn : solution of the Riccati equation after n iterations.
// Rn,Tn : gain matrices of the filter.
//!
[d,m]=size(H);
//initialization
Gn=G;
Rn=R0;
Pn=zeros(m,m)
Kn=0*ones(m,d);
//recursion
for j=1:n,
// Pn=Pn+Gn/Rn*Gn'
// Kn=Pn*H'
Kn=Kn+Gn/Rn*Gn'*H';
r1=R0-H*Kn;
Rn=Rn-Gn'*H'/r1*H*Gn;
Gn=(F-(G-F*Kn)/r1*H)*Gn;
end
//gain matrices of the filter.
//P=Pn
//R=R0-H*P*H'
//T=(G-F*P*H')/R
R=R0-H*Kn
T=(G-F*Kn)/R
P=Kn
endfunction
|