1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
c Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
c Copyright (C) INRIA
c
c This file must be used under the terms of the CeCILL.
c This source file is licensed as described in the file COPYING, which
c you should have received as part of this distribution. The terms
c are also available at
c http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
subroutine deg1l2(tg,ng,imin,ta,mxsol,w,iw,ierr)
C!but
C Determiner la totalite des polynome de degre 1.
C!liste d'appel
C sorties :
C -imin. est le nombre de minimums obtenus.
C -ta. est le tableau dans lequel sont conserves les
C minimums.
C tableaux de travail (dgmax=1)
C - w :32+32*dgmax+7*ng+dgmax*ng+dgmax**2*(ng+2)+2*mxsol
C -iw : 29+dgmax**2+4*dgmax+ mxsol
C!remarque
C on notera que le neq ieme coeff de chaque colonne
C devant contenir le coeff du plus au degre qui est
C toujours 1. contient en fait la valeur du critere
C pour ce polynome.
C!
implicit double precision (a-h,o-y)
dimension ta(mxsol,*),tg(ng+1)
external feq, feqn, jacl2, jacl2n
C
double precision x,phi0,phi,gnrm
dimension w(*), iw(*), xx(1)
integer dgmax
common /sortie/ io,info,ll
common /no2f/ gnrm
C
C
dgmax=1
ltq=1
lwopt=ltq+6+6*dgmax+6*ng+dgmax*ng+dgmax**2*(ng+1)
ltback=lwopt+25+26*dgmax+ng+dgmax**2
lfree = ltback + 2*mxsol
c
c les lrw elements de w suivant w(lwopt) ne doivent pas etre modifies
c d'un appel de optml2 a l'autre
lrw = dgmax**2 + 9*dgmax + 22
lw=lwopt+lrw
c
lneq=1
liwopt=lneq+3+(dgmax+1)*(dgmax+2)
lntb =liwopt + 20+dgmax
lifree=lntb+mxsol
C
minmax = -1
neq = 1
neqbac = 1
iback=0
c
iw(lneq)=neq
iw(lneq+1)=ng
iw(lneq+2)=dgmax
c
w(ltq)=0.99990d+0
w(ltq+1)=1.0d+0
ltg=ltq+2
call dcopy(ng+1,tg,1,w(ltg),1)
C
if (info .gt. 0) call outl2(51,neq,neq,xx,xx,x,x)
do 120 icomp = 1,50
if (minmax .eq. -1) then
nch = 1
call optml2(feq,jacl2,iw(lneq),w(ltq),nch,w(lwopt),
$ iw(liwopt))
if (info .gt. 1) then
call lq(neq,w(ltq),w(lw),w(ltg),ng)
x=sqrt(gnrm)
call dscal(neq,x,w(lw),1)
call outl2(nch,neq,neqbac,w(ltq),w(lw),x,x)
phi0= abs(phi(w(ltq),neq,w(ltg),ng,w(lw)))
lqdot=lw
call feq(iw(lneq),t,w(ltq),w(lqdot))
call outl2(17,neq,neq,w(ltq),w(lqdot),phi0,x)
endif
nch = 2
call optml2(feq,jacl2,iw(lneq),w(ltq),nch,w(lwopt),
$ iw(liwopt))
if (info .gt. 0) then
call lq(neq,w(ltq),w(lw),w(ltg),ng)
x=sqrt(gnrm)
call dscal(neq,x,w(lw),1)
call outl2(nch,neq,neqbac,w(ltq),w(lw),x,x)
phi0= abs(phi(w(ltq),neq,w(ltg),ng,w(lw)))
lqdot=lw
call feq(iw(lneq),t,w(ltq),w(lqdot))
call outl2(17,neq,neq,w(ltq),w(lqdot),phi0,x)
endif
minmax = 1
else
nch = 1
call optml2(feqn,jacl2n,iw(lneq),w(ltq),nch,w(lwopt),
$ iw(liwopt))
if (info .gt. 1) then
call lq(neq,w(ltq),w(lw),w(ltg),ng)
x=sqrt(gnrm)
call dscal(neq,x,w(lw),1)
call outl2(nch,neq,neqbac,w(ltq),w(lw),x,x)
phi0= abs(phi(w(ltq),neq,w(ltg),ng,w(lw)))
lqdot=lw
call feqn(iw(lneq),t,w(ltq),w(lqdot))
call outl2(17,neq,neq,w(ltq),w(lqdot),phi0,x)
endif
nch = 2
call optml2(feqn,jacl2n,iw(lneq),w(ltq),nch,w(lwopt),
$ iw(liwopt))
if (info .gt. 0) then
call lq(neq,w(ltq),w(lw),w(ltg),ng)
x=sqrt(gnrm)
call dscal(neq,x,w(lw),1)
call outl2(nch,neq,neqbac,w(ltq),w(lw),x,x)
phi0= abs(phi(w(ltq),neq,w(ltg),ng,w(lw)))
lqdot=lw
call feqn(iw(lneq),t,w(ltq),w(lqdot))
call outl2(17,neq,neq,w(ltq),w(lqdot),phi0,x)
endif
minmax = -1
endif
if (abs(w(ltq)) .gt. 1.0d+0) goto 140
if (minmax .eq. 1) then
if (icomp .eq. 1) then
imin = 1
ta(imin,1) = w(ltq)
ta(imin,2) = phi(w(ltq),neq,tg,ng,w(lwopt))
else
call storl2(neq,w(ltq),w(ltg),ng,imin,ta,iback,iw(lntb),
& w(ltback),nch,mxsol,w(lwopt),ierr)
if (ierr .gt. 0) return
endif
endif
w(ltq) = w(ltq) - 0.000010d+0
120 continue
C
140 if (info .gt. 0) then
x = real(mxsol)
call outl2(52,neq,imin,ta,xx,x,x)
endif
C
return
end
|