// ============================================================================ // Scilab ( http://www.scilab.org/ ) - This file is part of Scilab // Copyright (C) 2007-2008 - Bruno PINCON // // This file is distributed under the same license as the Scilab package. // ============================================================================ // <-- CLI SHELL MODE --> assert_checkfalse(execstr("umfpack()" ,"errcatch") == 0); refMsg = msprintf(_("%s: Wrong number of input argument(s): %d expected.\n"), "umfpack", 3); assert_checkerror("umfpack()", refMsg); assert_checkfalse(execstr("umfpack(speye(3,3), 2, 2)" ,"errcatch") == 0); refMsg = msprintf(_("%s: Wrong type for input argument #%d: A string expected.\n"), "umfpack", 2); assert_checkerror("umfpack(speye(3,3), 2, 2)", refMsg); assert_checkfalse(execstr("umfpack(1, ""\"", 2)" ,"errcatch") == 0); refMsg = msprintf(_("%s: Wrong type for input argument #%d: A sparse matrix expected.\n"), "umfpack", 1); assert_checkerror("umfpack(1, ""\"", 2)", refMsg); assert_checkfalse(execstr("umfpack(speye(3,3), ""\"", %s)" ,"errcatch") == 0); refMsg = msprintf(_("%s: Wrong type for input argument #%d: A matrix expected.\n"), "umfpack", 3); assert_checkerror("umfpack(speye(3,3), ""\"", %s)", refMsg); A = sparse( [ 2 3 0 0 0; 3 0 4 0 6; 0 -1 -3 2 0; 0 0 1 0 0; 0 4 2 0 1] ); b = [8 ; 45; -3; 3; 19]; x = umfpack(A,"\",b); assert_checkalmostequal(x, [1 2 3 4 5]'); // test the other form x A = b b = [8 20 13 6 17]; x = umfpack(b,"/",A); // solution must be [1 2 3 4 5] assert_checkalmostequal(x, [1 2 3 4 5]); // test multiple rhs b = rand(5,3); x = umfpack(A,"\",b); assert_checkfalse(norm(A*x-b) < %eps); // test multiple rhs for x A = b b = rand(3,5); x = umfpack(b,"/",A); assert_checkfalse(norm(x*A - b) > %eps); // solve a complex system A = sparse( [ 2+%i 3+2*%i 0 0 0; 3-%i 0 4+%i 0 6-3*%i; 0 -1+%i -3+6*%i 2-%i 0; 0 0 1-5*%i 0 0; 0 4 2-%i 0 1] ); b = [ 3+13*%i ; 58+32*%i ; -19+13*%i ; 18-12*%i ; 22+16*%i ]; x = umfpack(A,"\",b); // x must be [1+i; 2+2i; 3+3i; 4 + 4i; 5+5i] assert_checkfalse(norm(x - [1+%i; 2+2*%i; 3+3*%i; 4 + 4*%i; 5+5*%i]) < %eps); A = sparse( [ 2 3 0 0 0; 3 0 4 0 6; 0 -1 -3 2 0; 0 0 1 0 0; 0 4 2 0 1] ); Lup = umf_lufact(A); [OK, nrow, ncol, lnz, unz, udiag_nz, it] = umf_luinfo(Lup); // OK must be %t, nrow=ncol = 5, [L,U,p,q,R] = umf_luget(Lup); assert_checkequal(nnz(L), lnz); assert_checkequal(nnz(U), unz); umf_ludel(Lup); // clear memory // this is the test matrix from UMFPACK A = sparse( [ 2 3 0 0 0; 3 0 4 0 6; 0 -1 -3 2 0; 0 0 1 0 0; 0 4 2 0 1] ); Lup = umf_lufact(A); [L,U,p,q,R] = umf_luget(Lup); B = A; for i=1:5, B(i,:) = B(i,:)/R(i); end // apply the row scaling // must be a (quasi) nul matrix assert_checkfalse(norm(B(p,q) - L*U) > %eps); umf_ludel(Lup);// clear memory // the same with a complex matrix A = sparse( [ 2+%i 3+2*%i 0 0 0; 3-%i 0 4+%i 0 6-3*%i; 0 -1+%i -3+6*%i 2-%i 0; 0 0 1-5*%i 0 0; 0 4 2-%i 0 1] ); Lup = umf_lufact(A); [L,U,p,q,R] = umf_luget(Lup); B = A; for i=1:5, B(i,:) = B(i,:)/R(i); end // apply the row scaling // must be a (quasi) nul matrix assert_checkfalse(norm(B(p,q) - L*U) > %eps); umf_ludel(Lup); // clear memory