// ============================================================================= // Scilab ( http://www.scilab.org/ ) - This file is part of Scilab // Copyright (C) 2010 - DIGITEO - Michael Baudin // Copyright (C) 2011 - DIGITEO - Michael Baudin // // This file is distributed under the same license as the Scilab package. // ============================================================================= // <-- CLI SHELL MODE --> // <-- ENGLISH IMPOSED --> // Run with test_run('statistics','cdfgam',['no_check_error_output']); // // Assessing the quality of the Normal distribution function // References // Yalta, A. T. 2008. The accuracy of statistical distributions in Microsoft®Excel 2007. Comput. Stat. Data Anal. 52, 10 (Jun. 2008), 4579-4586. DOI= http://dx.doi.org/10.1016/j.csda.2008.03.005 // Computation of Statistical Distributions (ELV), Leo Knüsel // Table 5 // Check Gamma distribution with parameters (x, alpha, beta = 1, Sigma = 1) // // Table of inputs from Yalta, 2008 // [x shape scale P ] table = [ 0.1 , 0.1 , 1 , 0.827552 0.2 , 0.1 , 1 , 0.879420 0.2 , 0.2 , 1 , 0.764435 0.3 , 0.2 , 1 , 0.816527 0.3 , 0.3 , 1 , 0.726957 0.4 , 0.3 , 1 , 0.776381 0.4 , 0.4 , 1 , 0.701441 0.5 , 0.4 , 1 , 0.748019 0.5 , 0.5 , 1 , 0.682689 0.6 , 0.5 , 1 , 0.726678 ]; precision = 1.e-5; ntests = size(table,"r"); for i = 1 : ntests x = table(i,1); shape = table(i,2); scale = table(i,3); expected = table(i,4); // Caution: this is the rate ! rate = 1/scale; [computed,Q]=cdfgam("PQ",x,shape,rate); assert_checkalmostequal ( computed , expected , precision ); assert_checkalmostequal ( Q , 1 - expected , precision ); end // Table of inputs computed from R-2.8.1 // [x shape scale PDF-P CDF-P CDF-Q] table = [ 1.000000000000000056D-01 1.000000000000000056D-01 1.000000000000000000D+00 7.554920138253073958D-01 8.275517595858505882D-01 1.724482404141494951D-01 2.000000000000000111D-01 1.000000000000000056D-01 1.000000000000000000D+00 3.663307993056703071D-01 8.794196267900568076D-01 1.205803732099432063D-01 2.000000000000000111D-01 2.000000000000000111D-01 1.000000000000000000D+00 6.462857778271943188D-01 7.644345975029189777D-01 2.355654024970809945D-01 2.999999999999999889D-01 2.000000000000000111D-01 1.000000000000000000D+00 4.227875047602157044D-01 8.165267943336527168D-01 1.834732056663473110D-01 2.999999999999999889D-01 2.999999999999999889D-01 1.000000000000000000D+00 5.752117576599179438D-01 7.269573437103662439D-01 2.730426562896338116D-01 4.000000000000000222D-01 2.999999999999999889D-01 1.000000000000000000D+00 4.255407854753925911D-01 7.763805810166358734D-01 2.236194189833642099D-01 4.000000000000000222D-01 4.000000000000000222D-01 1.000000000000000000D+00 5.236648604477927016D-01 7.014412706419403953D-01 2.985587293580597157D-01 5.000000000000000000D-01 4.000000000000000222D-01 1.000000000000000000D+00 4.144555659263016167D-01 7.480185547260104206D-01 2.519814452739895239D-01 5.000000000000000000D-01 5.000000000000000000D-01 1.000000000000000000D+00 4.839414490382866751D-01 6.826894921370858516D-01 3.173105078629140929D-01 5.999999999999999778D-01 5.000000000000000000D-01 1.000000000000000000D+00 3.997355278034666060D-01 7.266783217077018575D-01 2.733216782922981980D-01 5.000000000000000000D-01 5.000000000000000000D-01 2.000000000000000000D+00 4.393912894677223790D-01 5.204998778130465187D-01 4.795001221869534258D-01 5.000000000000000000D-01 5.000000000000000000D-01 3.000000000000000000D+00 3.899393114454822729D-01 4.362971383492270094D-01 5.637028616507729906D-01 5.000000000000000000D-01 5.000000000000000000D-01 4.000000000000000000D+00 3.520653267642995243D-01 3.829249225480261809D-01 6.170750774519737636D-01 1.000000000000000000D+00 5.000000000000000000D-01 1.000000000000000000D+00 2.075537487102973866D-01 8.427007929497148941D-01 1.572992070502851891D-01 2.000000000000000000D+00 5.000000000000000000D-01 1.000000000000000000D+00 5.399096651318804896D-02 9.544997361036415828D-01 4.550026389635838248D-02 4.000000000000000000D+00 5.000000000000000000D-01 1.000000000000000000D+00 5.166746338523012412D-03 9.953222650189527121D-01 4.677734981047261889D-03 1.000000000000000000D+01 5.000000000000000000D-01 1.000000000000000000D+00 8.099910956089122777D-06 9.999922557835689840D-01 7.744216431044085842D-06 2.000000000000000000D+01 5.000000000000000000D-01 1.000000000000000000D+00 2.600281868827196957D-10 9.999999997460371493D-01 2.539628589470869077D-10 4.000000000000000000D+01 5.000000000000000000D-01 1.000000000000000000D+00 3.789795640412981196D-19 1.000000000000000000D+00 3.744097384202895045D-19 //1.000000000000000000D+02 5.000000000000000000D-01 1.000000000000000000D+00 2.098828115677222045D-45 1.000000000000000000D+00 2.088487583762558879D-45 3.000000000000000000D+02 5.000000000000000000D-01 1.000000000000000000D+00 1.67694904029982009D-132 1.000000000000000000D+00 1.67416798469182012D-132 //5.000000000000000000D+02 5.000000000000000000D-01 1.000000000000000000D+00 1.79762504374667411D-219 1.000000000000000000D+00 1.79583278480075297D-219 //1.000000000000000000D+03 5.000000000000000000D-01 1.000000000000000000D+00 0.000000000000000000D+00 1.000000000000000000D+00 0.000000000000000000D+00 1.000000000000000021D-02 5.000000000000000000D-01 1.000000000000000000D+00 5.585758033944684620D+00 1.124629160182848975D-01 8.875370839817151580D-01 1.000000000000000048D-04 5.000000000000000000D-01 1.000000000000000000D+00 5.641331674102550409D+01 1.128341555584961957D-02 9.887165844441503371D-01 1.000000000000000021D-08 5.000000000000000000D-01 1.000000000000000000D+00 5.641895779058606422D+03 1.128379163334249004D-04 9.998871620836665697D-01 9.999999999999999452D-21 5.000000000000000000D-01 1.000000000000000000D+00 5.641895835477570534D+09 1.128379167095512970D-10 9.999999998871620388D-01 9.999999999999999293D-41 5.000000000000000000D-01 1.000000000000000000D+00 5.641895835477568717D+19 1.128379167095512972D-20 1.000000000000000000D+00 1.00000000000000002D-100 5.000000000000000000D-01 1.000000000000000000D+00 5.641895835477541988D+49 1.128379167095513082D-50 1.000000000000000000D+00 9.99999999999999982D-201 5.000000000000000000D-01 1.000000000000000000D+00 5.641895835477511468D+99 1.12837916709551300D-100 1.000000000000000000D+00 //1.00000000000000002D-300 5.000000000000000000D-01 1.000000000000000000D+00 5.64189583547731891D+149 1.12837916709551298D-150 1.000000000000000000D+00 //0.000000000000000000D+00 5.000000000000000000D-01 1.000000000000000000D+00 %inf 0.000000000000000000D+00 1.000000000000000000D+00 ]; // For the inversion of Shape, require only 8 digits, as // a consequence of bug #7569: http://bugzilla.scilab.org/show_bug.cgi?id=7569 // // Some tests do not pass: // http://bugzilla.scilab.org/show_bug.cgi?id=8031 // http://bugzilla.scilab.org/show_bug.cgi?id=8030 // // Prints the number of accurate digits. precision = 1.e-12; precinverse = 1.e-8; ntests = size(table,"r"); for i = 1 : ntests x = table(i,1); shape = table(i,2); scale = table(i,3); p = table(i,5); q = table(i,6); // Caution: this is the rate ! rate = 1/scale; [p1,q1] = cdfgam("PQ",x,shape,rate); x1 = cdfgam("X",shape,rate,p,q); shape1 = cdfgam("Shape",rate,p,q,x); rate1 = cdfgam("Rate",p,q,x,shape); if ( %t ) then assert_checkalmostequal ( p1 , p , precision ); assert_checkalmostequal ( q1 , q , precision ); assert_checkalmostequal ( x1 , x , precision ); assert_checkalmostequal ( shape1 , shape , precinverse ); assert_checkalmostequal ( rate1 , rate , precinverse ); end if ( %f ) then dp = assert_computedigits ( p1 , p ); dq = assert_computedigits ( q1 , q ); dx = assert_computedigits ( x1 , x ); ds = assert_computedigits ( shape1 , shape ); dr = assert_computedigits ( rate1 , rate ); mprintf("Test #%3d/%3d: Digits p1= %.1f, q1=%.1f, X= %.1f, S= %.1f, R= %.1f\n",i,ntests,dp,dq,dx,ds,dr); end end // IEEE support // See http://bugzilla.scilab.org/show_bug.cgi?id=7296 Shape = 0; Rate = 1; X = %inf; // Inf [P, Q] = cdfgam("PQ", X, Shape, Rate); assert_checkequal(P, 1); assert_checkequal(Q, 0); X = %nan; // NaN [P, Q] = cdfgam("PQ", X, Shape, Rate); assert_checkequal(P, %nan); assert_checkequal(Q, %nan);