c Scilab ( http://www.scilab.org/ ) - This file is part of Scilab c Copyright (C) INRIA c c This file must be used under the terms of the CeCILL. c This source file is licensed as described in the file COPYING, which c you should have received as part of this distribution. The terms c are also available at c http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt subroutine dspos(op,ma,na,a,nela,inda,mb,nb,b, $ nelc,indc,ierr) c!purpose c compare the elements of a sparse matrix A and a full matrix B. c!parameters c a : array. c Contain non zero elements of the A matrix c ma,na: row and column dimension of the a matrix c mb,nb: row and column dimension of the b matrix c nela :integer: number of non zero elements of a c nelc :integer: c on entry maximum number of non zero elements of c c on return number of non zero elements of c c inda : a matrix control data: c inda(i) 1<=i<=ma contains the number of ith row non zero elements c of a c inda(ma+i) 1<=i<=nela column index of each non zero element c indc : on return contains c matrix control data: c indc(i) 1<=i<=mr contains the number of ith row non zero elements c of c c indc(mr+i) 1<=i<=nelb column index of each non zero element c b :(mb,nb) matrix c ierr : if non zero initial value of nelc is to small c ! double precision a(*),b(mb,nb) integer op,nr,nc,nela,inda(*),nelc,indc(*),ierr c integer jc,ka,kb,jb,i,ja,j1 double precision t logical dcompa,z external dcompa c nr=max(ma,mb) nc=max(na,nb) c nelmx=nelc ierr=0 c jc counts elements of c. jc = 1 c ka,kb are numbers in first i rows of a,b. ka = 1 kb = 1 kc = 1 c jb counts elements of b. jb = 1 c i counts rows of a,b,c. if( (ma.eq.1 .and. na.eq.1) .and. (mb.gt.1 .or. nb.gt.1) ) then c compare all element of b with scalar a t=0.0d0 if(inda(1).eq.1) t=a(1) z=dcompa(t,0.0d0,op) do 10 i=1,nr indc(i)=0 jc=kc do 04 j=1,nc if (dcompa(t,b(i,j),op)) then if(jc+1.gt.nelmx) goto 99 indc(nr+jc)=j jc=jc+1 endif 04 continue indc(i)=jc-kc kc=jc 10 continue elseif((ma.gt.1 .or. na.gt.1) .and. (mb.eq.1 .and. nb.eq.1)) then c compare all elements of a with scalar b t=b(1,1) z=dcompa(0.0d0,t,op) if (.not. z) then call spcmps(op, ma, na, nela, a, inda, inda(ma+1), $ t, nelc, indc, indc(ma+1), ierr) return endif do 20 i=1,nr indc(i)=0 nira=inda(i) ja=ka jc=kc if(nira.eq.0) then if(z) then if(kc+nc.gt.nelmx) goto 99 indc(i)=nc do 11 j=1,nc indc(nr+kc-1+j)=j 11 continue jc=kc+nc endif else j1=inda(nr+ja) do 12 j=1,nc if(j1.eq.j) then if (dcompa(a(ja),t,op)) then if(jc+1.gt.nelmx) goto 99 indc(nr+jc)=j jc=jc+1 endif if(ja-ka+1.lt.nira) ja=ja+1 j1=inda(nr+ja) elseif(z) then if(jc+1.gt.nelmx) goto 99 indc(nr+jc)=j jc=jc+1 endif 12 continue endif indc(i)=jc-kc ka=ka+nira kc=jc 20 continue else z=dcompa(0.0d0,0.0d0,op) do 30 i=1,nr indc(i)=0 nira=inda(i) ja=ka jc=kc if(nira.eq.0) then do 22 j=1,nc if (dcompa(0.0d0,b(i,j),op)) then if(jc+1.gt.nelmx) goto 99 indc(nr+jc)=j jc=jc+1 endif 22 continue else j1=inda(nr+ja) do 24 j=1,nc if(j1.eq.j) then if (dcompa(a(ja),b(i,j),op)) then if(jc+1.gt.nelmx) goto 99 indc(nr+jc)=j jc=jc+1 endif if(ja-ka+1.lt.nira) ja=ja+1 j1=inda(nr+ja) else if (dcompa(0.0d0,b(i,j),op)) then if(jc+1.gt.nelmx) goto 99 indc(nr+jc)=j jc=jc+1 endif endif 24 continue endif ka=ka+inda(i) indc(i)=jc-kc kc=jc 30 continue endif nelc = jc-1 return c error messages. 99 ierr=1 c no more place for c return end subroutine spcmps(op, A_m, A_n, A_nel, A_R, A_mnel, A_icol, $ s, C_nelmax, C_mnel, C_icol, ierr) * comparizon A op scalaire (where "0 op s" is false) * added by bruno to speed up this operation implicit none integer op, A_m, A_n, A_nel, A_mnel(*), A_icol(*), $ C_nelmax, C_mnel(*), C_icol(*), ierr double precision A_R(*), s integer kA, kAf, kC, i, k kAf = 0 kC = 0 ierr = 0 do i = 1, A_m kA = kAf + 1 kAf = kAf + A_mnel(i) C_mnel(i) = 0 do k = kA, kAf call cmp_and_update(A_R(k), s, op, C_mnel(i), $ C_icol, A_icol(k), kC, C_nelmax, ierr) if (ierr .eq. 1 ) return enddo enddo C_nelmax = kC end