SUBROUTINE SB04NW( ABSCHR, UL, N, M, C, LDC, INDX, AB, LDAB, D ) C C RELEASE 4.0, WGS COPYRIGHT 1999. C C PURPOSE C C To construct the right-hand side D for a system of equations in C Hessenberg form solved via SB04NY (case with 1 right-hand side). C C ARGUMENTS C C Mode Parameters C C ABSCHR CHARACTER*1 C Indicates whether AB contains A or B, as follows: C = 'A': AB contains A; C = 'B': AB contains B. C C UL CHARACTER*1 C Indicates whether AB is upper or lower Hessenberg matrix, C as follows: C = 'U': AB is upper Hessenberg; C = 'L': AB is lower Hessenberg. C C Input/Output Parameters C C N (input) INTEGER C The order of the matrix A. N >= 0. C C M (input) INTEGER C The order of the matrix B. M >= 0. C C C (input) DOUBLE PRECISION array, dimension (LDC,M) C The leading N-by-M part of this array must contain both C the not yet modified part of the coefficient matrix C of C the Sylvester equation AX + XB = C, and both the currently C computed part of the solution of the Sylvester equation. C C LDC INTEGER C The leading dimension of array C. LDC >= MAX(1,N). C C INDX (input) INTEGER C The position of the column/row of C to be used in the C construction of the right-hand side D. C C AB (input) DOUBLE PRECISION array, dimension (LDAB,*) C The leading N-by-N or M-by-M part of this array must C contain either A or B of the Sylvester equation C AX + XB = C. C C LDAB INTEGER C The leading dimension of array AB. C LDAB >= MAX(1,N) or LDAB >= MAX(1,M) (depending on C ABSCHR = 'A' or ABSCHR = 'B', respectively). C C D (output) DOUBLE PRECISION array, dimension (*) C The leading N or M part of this array (depending on C ABSCHR = 'B' or ABSCHR = 'A', respectively) contains the C right-hand side. C C NUMERICAL ASPECTS C C None. C C CONTRIBUTORS C C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997. C Supersedes Release 2.0 routine SB04BW by M. Vanbegin, and C P. Van Dooren, Philips Research Laboratory, Brussels, Belgium. C C REVISIONS C C - C C KEYWORDS C C Hessenberg form, orthogonal transformation, real Schur form, C Sylvester equation. C C ****************************************************************** C C .. Parameters .. DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D0 ) C .. Scalar Arguments .. CHARACTER ABSCHR, UL INTEGER INDX, LDAB, LDC, M, N C .. Array Arguments .. DOUBLE PRECISION AB(LDAB,*), C(LDC,*), D(*) C .. External Functions .. LOGICAL LSAME EXTERNAL LSAME C .. External Subroutines .. EXTERNAL DCOPY, DGEMV C .. Executable Statements .. C C For speed, no tests on the input scalar arguments are made. C Quick return if possible. C IF ( N.EQ.0 .OR. M.EQ.0 ) $ RETURN C IF ( LSAME( ABSCHR, 'B' ) ) THEN C C Construct the column of the right-hand side. C CALL DCOPY( N, C(1,INDX), 1, D, 1 ) IF ( LSAME( UL, 'U' ) ) THEN IF ( INDX.GT.1 ) THEN CALL DGEMV( 'N', N, INDX-1, -ONE, C, LDC, AB(1,INDX), 1, $ ONE, D, 1 ) END IF ELSE IF ( INDX.LT.M ) THEN CALL DGEMV( 'N', N, M-INDX, -ONE, C(1,INDX+1), LDC, $ AB(INDX+1,INDX), 1, ONE, D, 1 ) END IF END IF ELSE C C Construct the row of the right-hand side. C CALL DCOPY( M, C(INDX,1), LDC, D, 1 ) IF ( LSAME( UL, 'U' ) ) THEN IF ( INDX.LT.N ) THEN CALL DGEMV( 'T', N-INDX, M, -ONE, C(INDX+1,1), LDC, $ AB(INDX,INDX+1), LDAB, ONE, D, 1 ) END IF ELSE IF ( INDX.GT.1 ) THEN CALL DGEMV( 'T', INDX-1, M, -ONE, C, LDC, AB(INDX,1), $ LDAB, ONE, D, 1 ) END IF END IF END IF C RETURN C *** Last line of SB04NW *** END