/* Copyright (C) 2017 - IIT Bombay - FOSSEE This file must be used under the terms of the CeCILL. This source file is licensed as described in the file COPYING, which you should have received as part of this distribution. The terms are also available at http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt Author: Sandeep Gupta Organization: FOSSEE, IIT Bombay Email: toolbox@scilab.in */ /*This function finds the hessenberg form of a matrix A.*/ #include "spec.h" #include <stdio.h> #include "string.h" #include "stdlib.h" #include "lapack.h" #include "matrixTranspose.h" #include "matrixMultiplication.h" #include "doubleComplex.h" extern int dggev_(char *,char *,int *,double *,int *,double *,int *,double *,double *,double *,double *,int *,double *,int *,double *,int *,int *); void assembleEigenvectorsInPlace(int N,double *ALPHAI,double *EVreal,double *EVimg){ int j,i; j=0; while(j<N){ if(ALPHAI[j] == 0){ //printf(" * "); j+=1; } else{ int ij; int ij1; for(i=0;i<N;i++){ ij = i+j*N; ij1 = i+(j+1)*N; EVimg[ij] = EVreal[ij1]; EVimg[ij1] = -EVreal[ij1]; EVreal[ij1] = EVreal[ij]; } j+=2; } } } void dspec1a(double *in1,double *in2,int size,int nout,doubleComplex *out1,double *out2,doubleComplex *out3,doubleComplex *out4){ int i,j; char JOBVL; char JOBVR; int N=size; double *A; int LDA=N; A = (double *)malloc(N*N*sizeof(double)); memcpy(A,in1,N*N*sizeof(double)); double *B; int LDB=N; B = (double *)malloc(N*N*sizeof(double)); memcpy(B,in2,N*N*sizeof(double)); double *ALPHAR; ALPHAR = (double *)malloc(N*sizeof(double)); double *ALPHAI; ALPHAI = (double *)malloc(N*sizeof(double)); double *BETA; BETA = (double *)malloc(N*sizeof(double)); double *VL; VL = (double *)malloc(N*N*sizeof(double)); int LDVL=N; double *VR; VR = (double *)malloc(N*N*sizeof(double)); int LDVR=N; int LWORK=8*N; double *WORK; WORK = (double *)malloc(LWORK*sizeof(double)); int INFO; if(nout == 1){ /*out1 = spec(A,B)*/ JOBVL = 'N'; JOBVR = 'N'; dggev_(&JOBVL,&JOBVR,&N,A,&LDA,B,&LDB,ALPHAR,ALPHAI,BETA,VL,&LDVL,VR,&LDVR,WORK,&LWORK,&INFO); for(i=0;i<N;i++){ out1[i] = DoubleComplex(ALPHAR[i]/BETA[i],ALPHAI[i]/BETA[i]); } } else if(nout == 2){ /*[out1,out2] = spec(A,B)*/ JOBVL = 'N'; JOBVR = 'N'; dggev_(&JOBVL,&JOBVR,&N,A,&LDA,B,&LDB,ALPHAR,ALPHAI,BETA,VL,&LDVL,VR,&LDVR,WORK,&LWORK,&INFO); for(i=0;i<N;i++){ out1[i] = DoubleComplex(ALPHAR[i],ALPHAI[i]); } memcpy(out2,BETA,N*sizeof(double)); } else if(nout == 3){ /* [out1,out2,out3] = spec(A,B) */ JOBVL = 'N'; JOBVR = 'V'; dggev_(&JOBVL,&JOBVR,&N,A,&LDA,B,&LDB,ALPHAR,ALPHAI,BETA,VL,&LDVL,VR,&LDVR,WORK,&LWORK,&INFO); for(i=0;i<N;i++){ out1[i] = DoubleComplex(ALPHAR[i],ALPHAI[i]); } memcpy(out2,BETA,N*sizeof(double)); /*Because lapack routine doesn't give result in actual format, \ so we have to change the VR little-bit and then return the function */ /*See the Scilab code || see the lapack subroutine libary - DGGEV where \ it is very explantory and explains all this. */ double *EVimg; EVimg = (double *)malloc(N*N*sizeof(double)); for(i=0;i<N;i++){ for(j=0;j<N;j++){ EVimg[i+j*N] = 0; } } assembleEigenvectorsInPlace(N,ALPHAI,VR,EVimg); for(i=0;i<N;i++){ for(j=0;j<N;j++){ out3[i+j*N] = DoubleComplex(VR[i+j*N],EVimg[i+j*N]); } } } else if(nout == 4){ JOBVL = 'V'; JOBVR = 'V'; dggev_(&JOBVL,&JOBVR,&N,A,&LDA,B,&LDB,ALPHAR,ALPHAI,BETA,VL,&LDVL,VR,&LDVR,WORK,&LWORK,&INFO); for(i=0;i<N;i++){ out1[i] = DoubleComplex(ALPHAR[i],ALPHAI[i]); } memcpy(out2,BETA,N*sizeof(double)); double *EVimg; EVimg = (double *)malloc(N*N*sizeof(double)); for(i=0;i<N;i++){ for(j=0;j<N;j++){ EVimg[i+j*N] = 0; } } assembleEigenvectorsInPlace(N,ALPHAI,VR,EVimg); for(i=0;i<N;i++){ for(j=0;j<N;j++){ out4[i+j*N] = DoubleComplex(VR[i+j*N],EVimg[i+j*N]); } } double *EVimg1; EVimg1 = (double *)malloc(N*N*sizeof(double)); for(i=0;i<N;i++){ for(j=0;j<N;j++){ EVimg1[i+j*N] = 0; } } assembleEigenvectorsInPlace(N,ALPHAI,VL,EVimg1); for(i=0;i<N;i++){ for(j=0;j<N;j++){ out3[i+j*N] = DoubleComplex(VL[i+j*N],EVimg1[i+j*N]); } } } }