From c679afbd8d08c322d8323db5f57e0ab31db0cfca Mon Sep 17 00:00:00 2001
From: jofret
Date: Fri, 11 Apr 2008 09:46:18 +0000
Subject: Adding LAPACK and compilation process

---
 src/lib/lapack/zlanhe.f | 187 ++++++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 187 insertions(+)
 create mode 100644 src/lib/lapack/zlanhe.f

(limited to 'src/lib/lapack/zlanhe.f')

diff --git a/src/lib/lapack/zlanhe.f b/src/lib/lapack/zlanhe.f
new file mode 100644
index 00000000..86e57fcd
--- /dev/null
+++ b/src/lib/lapack/zlanhe.f
@@ -0,0 +1,187 @@
+      DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
+*
+*  -- LAPACK auxiliary routine (version 3.1) --
+*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+*     November 2006
+*
+*     .. Scalar Arguments ..
+      CHARACTER          NORM, UPLO
+      INTEGER            LDA, N
+*     ..
+*     .. Array Arguments ..
+      DOUBLE PRECISION   WORK( * )
+      COMPLEX*16         A( LDA, * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  ZLANHE  returns the value of the one norm,  or the Frobenius norm, or
+*  the  infinity norm,  or the  element of  largest absolute value  of a
+*  complex hermitian matrix A.
+*
+*  Description
+*  ===========
+*
+*  ZLANHE returns the value
+*
+*     ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
+*              (
+*              ( norm1(A),         NORM = '1', 'O' or 'o'
+*              (
+*              ( normI(A),         NORM = 'I' or 'i'
+*              (
+*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
+*
+*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
+*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
+*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
+*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
+*
+*  Arguments
+*  =========
+*
+*  NORM    (input) CHARACTER*1
+*          Specifies the value to be returned in ZLANHE as described
+*          above.
+*
+*  UPLO    (input) CHARACTER*1
+*          Specifies whether the upper or lower triangular part of the
+*          hermitian matrix A is to be referenced.
+*          = 'U':  Upper triangular part of A is referenced
+*          = 'L':  Lower triangular part of A is referenced
+*
+*  N       (input) INTEGER
+*          The order of the matrix A.  N >= 0.  When N = 0, ZLANHE is
+*          set to zero.
+*
+*  A       (input) COMPLEX*16 array, dimension (LDA,N)
+*          The hermitian matrix A.  If UPLO = 'U', the leading n by n
+*          upper triangular part of A contains the upper triangular part
+*          of the matrix A, and the strictly lower triangular part of A
+*          is not referenced.  If UPLO = 'L', the leading n by n lower
+*          triangular part of A contains the lower triangular part of
+*          the matrix A, and the strictly upper triangular part of A is
+*          not referenced. Note that the imaginary parts of the diagonal
+*          elements need not be set and are assumed to be zero.
+*
+*  LDA     (input) INTEGER
+*          The leading dimension of the array A.  LDA >= max(N,1).
+*
+*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
+*          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
+*          WORK is not referenced.
+*
+* =====================================================================
+*
+*     .. Parameters ..
+      DOUBLE PRECISION   ONE, ZERO
+      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+*     ..
+*     .. Local Scalars ..
+      INTEGER            I, J
+      DOUBLE PRECISION   ABSA, SCALE, SUM, VALUE
+*     ..
+*     .. External Functions ..
+      LOGICAL            LSAME
+      EXTERNAL           LSAME
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           ZLASSQ
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          ABS, DBLE, MAX, SQRT
+*     ..
+*     .. Executable Statements ..
+*
+      IF( N.EQ.0 ) THEN
+         VALUE = ZERO
+      ELSE IF( LSAME( NORM, 'M' ) ) THEN
+*
+*        Find max(abs(A(i,j))).
+*
+         VALUE = ZERO
+         IF( LSAME( UPLO, 'U' ) ) THEN
+            DO 20 J = 1, N
+               DO 10 I = 1, J - 1
+                  VALUE = MAX( VALUE, ABS( A( I, J ) ) )
+   10          CONTINUE
+               VALUE = MAX( VALUE, ABS( DBLE( A( J, J ) ) ) )
+   20       CONTINUE
+         ELSE
+            DO 40 J = 1, N
+               VALUE = MAX( VALUE, ABS( DBLE( A( J, J ) ) ) )
+               DO 30 I = J + 1, N
+                  VALUE = MAX( VALUE, ABS( A( I, J ) ) )
+   30          CONTINUE
+   40       CONTINUE
+         END IF
+      ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
+     $         ( NORM.EQ.'1' ) ) THEN
+*
+*        Find normI(A) ( = norm1(A), since A is hermitian).
+*
+         VALUE = ZERO
+         IF( LSAME( UPLO, 'U' ) ) THEN
+            DO 60 J = 1, N
+               SUM = ZERO
+               DO 50 I = 1, J - 1
+                  ABSA = ABS( A( I, J ) )
+                  SUM = SUM + ABSA
+                  WORK( I ) = WORK( I ) + ABSA
+   50          CONTINUE
+               WORK( J ) = SUM + ABS( DBLE( A( J, J ) ) )
+   60       CONTINUE
+            DO 70 I = 1, N
+               VALUE = MAX( VALUE, WORK( I ) )
+   70       CONTINUE
+         ELSE
+            DO 80 I = 1, N
+               WORK( I ) = ZERO
+   80       CONTINUE
+            DO 100 J = 1, N
+               SUM = WORK( J ) + ABS( DBLE( A( J, J ) ) )
+               DO 90 I = J + 1, N
+                  ABSA = ABS( A( I, J ) )
+                  SUM = SUM + ABSA
+                  WORK( I ) = WORK( I ) + ABSA
+   90          CONTINUE
+               VALUE = MAX( VALUE, SUM )
+  100       CONTINUE
+         END IF
+      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
+*
+*        Find normF(A).
+*
+         SCALE = ZERO
+         SUM = ONE
+         IF( LSAME( UPLO, 'U' ) ) THEN
+            DO 110 J = 2, N
+               CALL ZLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
+  110       CONTINUE
+         ELSE
+            DO 120 J = 1, N - 1
+               CALL ZLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
+  120       CONTINUE
+         END IF
+         SUM = 2*SUM
+         DO 130 I = 1, N
+            IF( DBLE( A( I, I ) ).NE.ZERO ) THEN
+               ABSA = ABS( DBLE( A( I, I ) ) )
+               IF( SCALE.LT.ABSA ) THEN
+                  SUM = ONE + SUM*( SCALE / ABSA )**2
+                  SCALE = ABSA
+               ELSE
+                  SUM = SUM + ( ABSA / SCALE )**2
+               END IF
+            END IF
+  130    CONTINUE
+         VALUE = SCALE*SQRT( SUM )
+      END IF
+*
+      ZLANHE = VALUE
+      RETURN
+*
+*     End of ZLANHE
+*
+      END
-- 
cgit