From 8c8d2f518968ce7057eec6aa5cd5aec8faab861a Mon Sep 17 00:00:00 2001 From: jofret Date: Tue, 28 Apr 2009 07:17:00 +0000 Subject: Moving lapack to right place --- src/lib/lapack/dgees.f | 434 ------------------------------------------------- 1 file changed, 434 deletions(-) delete mode 100644 src/lib/lapack/dgees.f (limited to 'src/lib/lapack/dgees.f') diff --git a/src/lib/lapack/dgees.f b/src/lib/lapack/dgees.f deleted file mode 100644 index 96ba8019..00000000 --- a/src/lib/lapack/dgees.f +++ /dev/null @@ -1,434 +0,0 @@ - SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI, - $ VS, LDVS, WORK, LWORK, BWORK, INFO ) -* -* -- LAPACK driver routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - CHARACTER JOBVS, SORT - INTEGER INFO, LDA, LDVS, LWORK, N, SDIM -* .. -* .. Array Arguments .. - LOGICAL BWORK( * ) - DOUBLE PRECISION A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ), - $ WR( * ) -* .. -* .. Function Arguments .. - LOGICAL SELECT - EXTERNAL SELECT -* .. -* -* Purpose -* ======= -* -* DGEES computes for an N-by-N real nonsymmetric matrix A, the -* eigenvalues, the real Schur form T, and, optionally, the matrix of -* Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T). -* -* Optionally, it also orders the eigenvalues on the diagonal of the -* real Schur form so that selected eigenvalues are at the top left. -* The leading columns of Z then form an orthonormal basis for the -* invariant subspace corresponding to the selected eigenvalues. -* -* A matrix is in real Schur form if it is upper quasi-triangular with -* 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the -* form -* [ a b ] -* [ c a ] -* -* where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc). -* -* Arguments -* ========= -* -* JOBVS (input) CHARACTER*1 -* = 'N': Schur vectors are not computed; -* = 'V': Schur vectors are computed. -* -* SORT (input) CHARACTER*1 -* Specifies whether or not to order the eigenvalues on the -* diagonal of the Schur form. -* = 'N': Eigenvalues are not ordered; -* = 'S': Eigenvalues are ordered (see SELECT). -* -* SELECT (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION arguments -* SELECT must be declared EXTERNAL in the calling subroutine. -* If SORT = 'S', SELECT is used to select eigenvalues to sort -* to the top left of the Schur form. -* If SORT = 'N', SELECT is not referenced. -* An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if -* SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex -* conjugate pair of eigenvalues is selected, then both complex -* eigenvalues are selected. -* Note that a selected complex eigenvalue may no longer -* satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since -* ordering may change the value of complex eigenvalues -* (especially if the eigenvalue is ill-conditioned); in this -* case INFO is set to N+2 (see INFO below). -* -* N (input) INTEGER -* The order of the matrix A. N >= 0. -* -* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) -* On entry, the N-by-N matrix A. -* On exit, A has been overwritten by its real Schur form T. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,N). -* -* SDIM (output) INTEGER -* If SORT = 'N', SDIM = 0. -* If SORT = 'S', SDIM = number of eigenvalues (after sorting) -* for which SELECT is true. (Complex conjugate -* pairs for which SELECT is true for either -* eigenvalue count as 2.) -* -* WR (output) DOUBLE PRECISION array, dimension (N) -* WI (output) DOUBLE PRECISION array, dimension (N) -* WR and WI contain the real and imaginary parts, -* respectively, of the computed eigenvalues in the same order -* that they appear on the diagonal of the output Schur form T. -* Complex conjugate pairs of eigenvalues will appear -* consecutively with the eigenvalue having the positive -* imaginary part first. -* -* VS (output) DOUBLE PRECISION array, dimension (LDVS,N) -* If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur -* vectors. -* If JOBVS = 'N', VS is not referenced. -* -* LDVS (input) INTEGER -* The leading dimension of the array VS. LDVS >= 1; if -* JOBVS = 'V', LDVS >= N. -* -* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) -* On exit, if INFO = 0, WORK(1) contains the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. LWORK >= max(1,3*N). -* For good performance, LWORK must generally be larger. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* BWORK (workspace) LOGICAL array, dimension (N) -* Not referenced if SORT = 'N'. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value. -* > 0: if INFO = i, and i is -* <= N: the QR algorithm failed to compute all the -* eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI -* contain those eigenvalues which have converged; if -* JOBVS = 'V', VS contains the matrix which reduces A -* to its partially converged Schur form. -* = N+1: the eigenvalues could not be reordered because some -* eigenvalues were too close to separate (the problem -* is very ill-conditioned); -* = N+2: after reordering, roundoff changed values of some -* complex eigenvalues so that leading eigenvalues in -* the Schur form no longer satisfy SELECT=.TRUE. This -* could also be caused by underflow due to scaling. -* -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) -* .. -* .. Local Scalars .. - LOGICAL CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTST, - $ WANTVS - INTEGER HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL, - $ IHI, ILO, INXT, IP, ITAU, IWRK, MAXWRK, MINWRK - DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM -* .. -* .. Local Arrays .. - INTEGER IDUM( 1 ) - DOUBLE PRECISION DUM( 1 ) -* .. -* .. External Subroutines .. - EXTERNAL DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY, - $ DLABAD, DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA -* .. -* .. External Functions .. - LOGICAL LSAME - INTEGER ILAENV - DOUBLE PRECISION DLAMCH, DLANGE - EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE -* .. -* .. Intrinsic Functions .. - INTRINSIC MAX, SQRT -* .. -* .. Executable Statements .. -* -* Test the input arguments -* - INFO = 0 - LQUERY = ( LWORK.EQ.-1 ) - WANTVS = LSAME( JOBVS, 'V' ) - WANTST = LSAME( SORT, 'S' ) - IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN - INFO = -1 - ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN - INFO = -2 - ELSE IF( N.LT.0 ) THEN - INFO = -4 - ELSE IF( LDA.LT.MAX( 1, N ) ) THEN - INFO = -6 - ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN - INFO = -11 - END IF -* -* Compute workspace -* (Note: Comments in the code beginning "Workspace:" describe the -* minimal amount of workspace needed at that point in the code, -* as well as the preferred amount for good performance. -* NB refers to the optimal block size for the immediately -* following subroutine, as returned by ILAENV. -* HSWORK refers to the workspace preferred by DHSEQR, as -* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, -* the worst case.) -* - IF( INFO.EQ.0 ) THEN - IF( N.EQ.0 ) THEN - MINWRK = 1 - MAXWRK = 1 - ELSE - MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 ) - MINWRK = 3*N -* - CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS, - $ WORK, -1, IEVAL ) - HSWORK = WORK( 1 ) -* - IF( .NOT.WANTVS ) THEN - MAXWRK = MAX( MAXWRK, N + HSWORK ) - ELSE - MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1, - $ 'DORGHR', ' ', N, 1, N, -1 ) ) - MAXWRK = MAX( MAXWRK, N + HSWORK ) - END IF - END IF - WORK( 1 ) = MAXWRK -* - IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN - INFO = -13 - END IF - END IF -* - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'DGEES ', -INFO ) - RETURN - ELSE IF( LQUERY ) THEN - RETURN - END IF -* -* Quick return if possible -* - IF( N.EQ.0 ) THEN - SDIM = 0 - RETURN - END IF -* -* Get machine constants -* - EPS = DLAMCH( 'P' ) - SMLNUM = DLAMCH( 'S' ) - BIGNUM = ONE / SMLNUM - CALL DLABAD( SMLNUM, BIGNUM ) - SMLNUM = SQRT( SMLNUM ) / EPS - BIGNUM = ONE / SMLNUM -* -* Scale A if max element outside range [SMLNUM,BIGNUM] -* - ANRM = DLANGE( 'M', N, N, A, LDA, DUM ) - SCALEA = .FALSE. - IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN - SCALEA = .TRUE. - CSCALE = SMLNUM - ELSE IF( ANRM.GT.BIGNUM ) THEN - SCALEA = .TRUE. - CSCALE = BIGNUM - END IF - IF( SCALEA ) - $ CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR ) -* -* Permute the matrix to make it more nearly triangular -* (Workspace: need N) -* - IBAL = 1 - CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR ) -* -* Reduce to upper Hessenberg form -* (Workspace: need 3*N, prefer 2*N+N*NB) -* - ITAU = N + IBAL - IWRK = N + ITAU - CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ), - $ LWORK-IWRK+1, IERR ) -* - IF( WANTVS ) THEN -* -* Copy Householder vectors to VS -* - CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS ) -* -* Generate orthogonal matrix in VS -* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) -* - CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ), - $ LWORK-IWRK+1, IERR ) - END IF -* - SDIM = 0 -* -* Perform QR iteration, accumulating Schur vectors in VS if desired -* (Workspace: need N+1, prefer N+HSWORK (see comments) ) -* - IWRK = ITAU - CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS, - $ WORK( IWRK ), LWORK-IWRK+1, IEVAL ) - IF( IEVAL.GT.0 ) - $ INFO = IEVAL -* -* Sort eigenvalues if desired -* - IF( WANTST .AND. INFO.EQ.0 ) THEN - IF( SCALEA ) THEN - CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR ) - CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR ) - END IF - DO 10 I = 1, N - BWORK( I ) = SELECT( WR( I ), WI( I ) ) - 10 CONTINUE -* -* Reorder eigenvalues and transform Schur vectors -* (Workspace: none needed) -* - CALL DTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI, - $ SDIM, S, SEP, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1, - $ ICOND ) - IF( ICOND.GT.0 ) - $ INFO = N + ICOND - END IF -* - IF( WANTVS ) THEN -* -* Undo balancing -* (Workspace: need N) -* - CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS, - $ IERR ) - END IF -* - IF( SCALEA ) THEN -* -* Undo scaling for the Schur form of A -* - CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR ) - CALL DCOPY( N, A, LDA+1, WR, 1 ) - IF( CSCALE.EQ.SMLNUM ) THEN -* -* If scaling back towards underflow, adjust WI if an -* offdiagonal element of a 2-by-2 block in the Schur form -* underflows. -* - IF( IEVAL.GT.0 ) THEN - I1 = IEVAL + 1 - I2 = IHI - 1 - CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, - $ MAX( ILO-1, 1 ), IERR ) - ELSE IF( WANTST ) THEN - I1 = 1 - I2 = N - 1 - ELSE - I1 = ILO - I2 = IHI - 1 - END IF - INXT = I1 - 1 - DO 20 I = I1, I2 - IF( I.LT.INXT ) - $ GO TO 20 - IF( WI( I ).EQ.ZERO ) THEN - INXT = I + 1 - ELSE - IF( A( I+1, I ).EQ.ZERO ) THEN - WI( I ) = ZERO - WI( I+1 ) = ZERO - ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ. - $ ZERO ) THEN - WI( I ) = ZERO - WI( I+1 ) = ZERO - IF( I.GT.1 ) - $ CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 ) - IF( N.GT.I+1 ) - $ CALL DSWAP( N-I-1, A( I, I+2 ), LDA, - $ A( I+1, I+2 ), LDA ) - IF( WANTVS ) THEN - CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 ) - END IF - A( I, I+1 ) = A( I+1, I ) - A( I+1, I ) = ZERO - END IF - INXT = I + 2 - END IF - 20 CONTINUE - END IF -* -* Undo scaling for the imaginary part of the eigenvalues -* - CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1, - $ WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR ) - END IF -* - IF( WANTST .AND. INFO.EQ.0 ) THEN -* -* Check if reordering successful -* - LASTSL = .TRUE. - LST2SL = .TRUE. - SDIM = 0 - IP = 0 - DO 30 I = 1, N - CURSL = SELECT( WR( I ), WI( I ) ) - IF( WI( I ).EQ.ZERO ) THEN - IF( CURSL ) - $ SDIM = SDIM + 1 - IP = 0 - IF( CURSL .AND. .NOT.LASTSL ) - $ INFO = N + 2 - ELSE - IF( IP.EQ.1 ) THEN -* -* Last eigenvalue of conjugate pair -* - CURSL = CURSL .OR. LASTSL - LASTSL = CURSL - IF( CURSL ) - $ SDIM = SDIM + 2 - IP = -1 - IF( CURSL .AND. .NOT.LST2SL ) - $ INFO = N + 2 - ELSE -* -* First eigenvalue of conjugate pair -* - IP = 1 - END IF - END IF - LST2SL = LASTSL - LASTSL = CURSL - 30 CONTINUE - END IF -* - WORK( 1 ) = MAXWRK - RETURN -* -* End of DGEES -* - END -- cgit