From 277d1edfa17bf3719d90ddbac8e31f6181e952c3 Mon Sep 17 00:00:00 2001
From: Sandeep Gupta
Date: Sun, 18 Jun 2017 23:55:40 +0530
Subject: First commit

---
 src/fortran/lapack/dtgsen.f | 723 ++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 723 insertions(+)
 create mode 100644 src/fortran/lapack/dtgsen.f

(limited to 'src/fortran/lapack/dtgsen.f')

diff --git a/src/fortran/lapack/dtgsen.f b/src/fortran/lapack/dtgsen.f
new file mode 100644
index 00000000..917a7b0f
--- /dev/null
+++ b/src/fortran/lapack/dtgsen.f
@@ -0,0 +1,723 @@
+      SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
+     $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
+     $                   PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
+*
+*  -- LAPACK routine (version 3.1) --
+*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+*     November 2006
+*
+*     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
+*
+*     .. Scalar Arguments ..
+      LOGICAL            WANTQ, WANTZ
+      INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
+     $                   M, N
+      DOUBLE PRECISION   PL, PR
+*     ..
+*     .. Array Arguments ..
+      LOGICAL            SELECT( * )
+      INTEGER            IWORK( * )
+      DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
+     $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
+     $                   WORK( * ), Z( LDZ, * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  DTGSEN reorders the generalized real Schur decomposition of a real
+*  matrix pair (A, B) (in terms of an orthonormal equivalence trans-
+*  formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues
+*  appears in the leading diagonal blocks of the upper quasi-triangular
+*  matrix A and the upper triangular B. The leading columns of Q and
+*  Z form orthonormal bases of the corresponding left and right eigen-
+*  spaces (deflating subspaces). (A, B) must be in generalized real
+*  Schur canonical form (as returned by DGGES), i.e. A is block upper
+*  triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
+*  triangular.
+*
+*  DTGSEN also computes the generalized eigenvalues
+*
+*              w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
+*
+*  of the reordered matrix pair (A, B).
+*
+*  Optionally, DTGSEN computes the estimates of reciprocal condition
+*  numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
+*  (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
+*  between the matrix pairs (A11, B11) and (A22,B22) that correspond to
+*  the selected cluster and the eigenvalues outside the cluster, resp.,
+*  and norms of "projections" onto left and right eigenspaces w.r.t.
+*  the selected cluster in the (1,1)-block.
+*
+*  Arguments
+*  =========
+*
+*  IJOB    (input) INTEGER
+*          Specifies whether condition numbers are required for the
+*          cluster of eigenvalues (PL and PR) or the deflating subspaces
+*          (Difu and Difl):
+*           =0: Only reorder w.r.t. SELECT. No extras.
+*           =1: Reciprocal of norms of "projections" onto left and right
+*               eigenspaces w.r.t. the selected cluster (PL and PR).
+*           =2: Upper bounds on Difu and Difl. F-norm-based estimate
+*               (DIF(1:2)).
+*           =3: Estimate of Difu and Difl. 1-norm-based estimate
+*               (DIF(1:2)).
+*               About 5 times as expensive as IJOB = 2.
+*           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
+*               version to get it all.
+*           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
+*
+*  WANTQ   (input) LOGICAL
+*          .TRUE. : update the left transformation matrix Q;
+*          .FALSE.: do not update Q.
+*
+*  WANTZ   (input) LOGICAL
+*          .TRUE. : update the right transformation matrix Z;
+*          .FALSE.: do not update Z.
+*
+*  SELECT  (input) LOGICAL array, dimension (N)
+*          SELECT specifies the eigenvalues in the selected cluster.
+*          To select a real eigenvalue w(j), SELECT(j) must be set to
+*          .TRUE.. To select a complex conjugate pair of eigenvalues
+*          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
+*          either SELECT(j) or SELECT(j+1) or both must be set to
+*          .TRUE.; a complex conjugate pair of eigenvalues must be
+*          either both included in the cluster or both excluded.
+*
+*  N       (input) INTEGER
+*          The order of the matrices A and B. N >= 0.
+*
+*  A       (input/output) DOUBLE PRECISION array, dimension(LDA,N)
+*          On entry, the upper quasi-triangular matrix A, with (A, B) in
+*          generalized real Schur canonical form.
+*          On exit, A is overwritten by the reordered matrix A.
+*
+*  LDA     (input) INTEGER
+*          The leading dimension of the array A. LDA >= max(1,N).
+*
+*  B       (input/output) DOUBLE PRECISION array, dimension(LDB,N)
+*          On entry, the upper triangular matrix B, with (A, B) in
+*          generalized real Schur canonical form.
+*          On exit, B is overwritten by the reordered matrix B.
+*
+*  LDB     (input) INTEGER
+*          The leading dimension of the array B. LDB >= max(1,N).
+*
+*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
+*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
+*  BETA    (output) DOUBLE PRECISION array, dimension (N)
+*          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
+*          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
+*          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
+*          form (S,T) that would result if the 2-by-2 diagonal blocks of
+*          the real generalized Schur form of (A,B) were further reduced
+*          to triangular form using complex unitary transformations.
+*          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
+*          positive, then the j-th and (j+1)-st eigenvalues are a
+*          complex conjugate pair, with ALPHAI(j+1) negative.
+*
+*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
+*          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
+*          On exit, Q has been postmultiplied by the left orthogonal
+*          transformation matrix which reorder (A, B); The leading M
+*          columns of Q form orthonormal bases for the specified pair of
+*          left eigenspaces (deflating subspaces).
+*          If WANTQ = .FALSE., Q is not referenced.
+*
+*  LDQ     (input) INTEGER
+*          The leading dimension of the array Q.  LDQ >= 1;
+*          and if WANTQ = .TRUE., LDQ >= N.
+*
+*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
+*          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
+*          On exit, Z has been postmultiplied by the left orthogonal
+*          transformation matrix which reorder (A, B); The leading M
+*          columns of Z form orthonormal bases for the specified pair of
+*          left eigenspaces (deflating subspaces).
+*          If WANTZ = .FALSE., Z is not referenced.
+*
+*  LDZ     (input) INTEGER
+*          The leading dimension of the array Z. LDZ >= 1;
+*          If WANTZ = .TRUE., LDZ >= N.
+*
+*  M       (output) INTEGER
+*          The dimension of the specified pair of left and right eigen-
+*          spaces (deflating subspaces). 0 <= M <= N.
+*
+*  PL      (output) DOUBLE PRECISION
+*  PR      (output) DOUBLE PRECISION
+*          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
+*          reciprocal of the norm of "projections" onto left and right
+*          eigenspaces with respect to the selected cluster.
+*          0 < PL, PR <= 1.
+*          If M = 0 or M = N, PL = PR  = 1.
+*          If IJOB = 0, 2 or 3, PL and PR are not referenced.
+*
+*  DIF     (output) DOUBLE PRECISION array, dimension (2).
+*          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
+*          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
+*          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
+*          estimates of Difu and Difl.
+*          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
+*          If IJOB = 0 or 1, DIF is not referenced.
+*
+*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+*          IF IJOB = 0, WORK is not referenced.  Otherwise,
+*          on exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+*  LWORK   (input) INTEGER
+*          The dimension of the array WORK. LWORK >=  4*N+16.
+*          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
+*          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
+*
+*          If LWORK = -1, then a workspace query is assumed; the routine
+*          only calculates the optimal size of the WORK array, returns
+*          this value as the first entry of the WORK array, and no error
+*          message related to LWORK is issued by XERBLA.
+*
+*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
+*          IF IJOB = 0, IWORK is not referenced.  Otherwise,
+*          on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
+*
+*  LIWORK  (input) INTEGER
+*          The dimension of the array IWORK. LIWORK >= 1.
+*          If IJOB = 1, 2 or 4, LIWORK >=  N+6.
+*          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
+*
+*          If LIWORK = -1, then a workspace query is assumed; the
+*          routine only calculates the optimal size of the IWORK array,
+*          returns this value as the first entry of the IWORK array, and
+*          no error message related to LIWORK is issued by XERBLA.
+*
+*  INFO    (output) INTEGER
+*            =0: Successful exit.
+*            <0: If INFO = -i, the i-th argument had an illegal value.
+*            =1: Reordering of (A, B) failed because the transformed
+*                matrix pair (A, B) would be too far from generalized
+*                Schur form; the problem is very ill-conditioned.
+*                (A, B) may have been partially reordered.
+*                If requested, 0 is returned in DIF(*), PL and PR.
+*
+*  Further Details
+*  ===============
+*
+*  DTGSEN first collects the selected eigenvalues by computing
+*  orthogonal U and W that move them to the top left corner of (A, B).
+*  In other words, the selected eigenvalues are the eigenvalues of
+*  (A11, B11) in:
+*
+*                U'*(A, B)*W = (A11 A12) (B11 B12) n1
+*                              ( 0  A22),( 0  B22) n2
+*                                n1  n2    n1  n2
+*
+*  where N = n1+n2 and U' means the transpose of U. The first n1 columns
+*  of U and W span the specified pair of left and right eigenspaces
+*  (deflating subspaces) of (A, B).
+*
+*  If (A, B) has been obtained from the generalized real Schur
+*  decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
+*  reordered generalized real Schur form of (C, D) is given by
+*
+*           (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',
+*
+*  and the first n1 columns of Q*U and Z*W span the corresponding
+*  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
+*
+*  Note that if the selected eigenvalue is sufficiently ill-conditioned,
+*  then its value may differ significantly from its value before
+*  reordering.
+*
+*  The reciprocal condition numbers of the left and right eigenspaces
+*  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
+*  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
+*
+*  The Difu and Difl are defined as:
+*
+*       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
+*  and
+*       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
+*
+*  where sigma-min(Zu) is the smallest singular value of the
+*  (2*n1*n2)-by-(2*n1*n2) matrix
+*
+*       Zu = [ kron(In2, A11)  -kron(A22', In1) ]
+*            [ kron(In2, B11)  -kron(B22', In1) ].
+*
+*  Here, Inx is the identity matrix of size nx and A22' is the
+*  transpose of A22. kron(X, Y) is the Kronecker product between
+*  the matrices X and Y.
+*
+*  When DIF(2) is small, small changes in (A, B) can cause large changes
+*  in the deflating subspace. An approximate (asymptotic) bound on the
+*  maximum angular error in the computed deflating subspaces is
+*
+*       EPS * norm((A, B)) / DIF(2),
+*
+*  where EPS is the machine precision.
+*
+*  The reciprocal norm of the projectors on the left and right
+*  eigenspaces associated with (A11, B11) may be returned in PL and PR.
+*  They are computed as follows. First we compute L and R so that
+*  P*(A, B)*Q is block diagonal, where
+*
+*       P = ( I -L ) n1           Q = ( I R ) n1
+*           ( 0  I ) n2    and        ( 0 I ) n2
+*             n1 n2                    n1 n2
+*
+*  and (L, R) is the solution to the generalized Sylvester equation
+*
+*       A11*R - L*A22 = -A12
+*       B11*R - L*B22 = -B12
+*
+*  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
+*  An approximate (asymptotic) bound on the average absolute error of
+*  the selected eigenvalues is
+*
+*       EPS * norm((A, B)) / PL.
+*
+*  There are also global error bounds which valid for perturbations up
+*  to a certain restriction:  A lower bound (x) on the smallest
+*  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
+*  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
+*  (i.e. (A + E, B + F), is
+*
+*   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
+*
+*  An approximate bound on x can be computed from DIF(1:2), PL and PR.
+*
+*  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
+*  (L', R') and unperturbed (L, R) left and right deflating subspaces
+*  associated with the selected cluster in the (1,1)-blocks can be
+*  bounded as
+*
+*   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
+*   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
+*
+*  See LAPACK User's Guide section 4.11 or the following references
+*  for more information.
+*
+*  Note that if the default method for computing the Frobenius-norm-
+*  based estimate DIF is not wanted (see DLATDF), then the parameter
+*  IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
+*  (IJOB = 2 will be used)). See DTGSYL for more details.
+*
+*  Based on contributions by
+*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
+*     Umea University, S-901 87 Umea, Sweden.
+*
+*  References
+*  ==========
+*
+*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
+*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
+*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
+*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
+*
+*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
+*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
+*      Estimation: Theory, Algorithms and Software,
+*      Report UMINF - 94.04, Department of Computing Science, Umea
+*      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
+*      Note 87. To appear in Numerical Algorithms, 1996.
+*
+*  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
+*      for Solving the Generalized Sylvester Equation and Estimating the
+*      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
+*      Department of Computing Science, Umea University, S-901 87 Umea,
+*      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
+*      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
+*      1996.
+*
+*  =====================================================================
+*
+*     .. Parameters ..
+      INTEGER            IDIFJB
+      PARAMETER          ( IDIFJB = 3 )
+      DOUBLE PRECISION   ZERO, ONE
+      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+*     ..
+*     .. Local Scalars ..
+      LOGICAL            LQUERY, PAIR, SWAP, WANTD, WANTD1, WANTD2,
+     $                   WANTP
+      INTEGER            I, IERR, IJB, K, KASE, KK, KS, LIWMIN, LWMIN,
+     $                   MN2, N1, N2
+      DOUBLE PRECISION   DSCALE, DSUM, EPS, RDSCAL, SMLNUM
+*     ..
+*     .. Local Arrays ..
+      INTEGER            ISAVE( 3 )
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           DLACN2, DLACPY, DLAG2, DLASSQ, DTGEXC, DTGSYL,
+     $                   XERBLA
+*     ..
+*     .. External Functions ..
+      DOUBLE PRECISION   DLAMCH
+      EXTERNAL           DLAMCH
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          MAX, SIGN, SQRT
+*     ..
+*     .. Executable Statements ..
+*
+*     Decode and test the input parameters
+*
+      INFO = 0
+      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
+*
+      IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
+         INFO = -1
+      ELSE IF( N.LT.0 ) THEN
+         INFO = -5
+      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+         INFO = -7
+      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+         INFO = -9
+      ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
+         INFO = -14
+      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
+         INFO = -16
+      END IF
+*
+      IF( INFO.NE.0 ) THEN
+         CALL XERBLA( 'DTGSEN', -INFO )
+         RETURN
+      END IF
+*
+*     Get machine constants
+*
+      EPS = DLAMCH( 'P' )
+      SMLNUM = DLAMCH( 'S' ) / EPS
+      IERR = 0
+*
+      WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
+      WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
+      WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
+      WANTD = WANTD1 .OR. WANTD2
+*
+*     Set M to the dimension of the specified pair of deflating
+*     subspaces.
+*
+      M = 0
+      PAIR = .FALSE.
+      DO 10 K = 1, N
+         IF( PAIR ) THEN
+            PAIR = .FALSE.
+         ELSE
+            IF( K.LT.N ) THEN
+               IF( A( K+1, K ).EQ.ZERO ) THEN
+                  IF( SELECT( K ) )
+     $               M = M + 1
+               ELSE
+                  PAIR = .TRUE.
+                  IF( SELECT( K ) .OR. SELECT( K+1 ) )
+     $               M = M + 2
+               END IF
+            ELSE
+               IF( SELECT( N ) )
+     $            M = M + 1
+            END IF
+         END IF
+   10 CONTINUE
+*
+      IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
+         LWMIN = MAX( 1, 4*N+16, 2*M*( N-M ) )
+         LIWMIN = MAX( 1, N+6 )
+      ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
+         LWMIN = MAX( 1, 4*N+16, 4*M*( N-M ) )
+         LIWMIN = MAX( 1, 2*M*( N-M ), N+6 )
+      ELSE
+         LWMIN = MAX( 1, 4*N+16 )
+         LIWMIN = 1
+      END IF
+*
+      WORK( 1 ) = LWMIN
+      IWORK( 1 ) = LIWMIN
+*
+      IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
+         INFO = -22
+      ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
+         INFO = -24
+      END IF
+*
+      IF( INFO.NE.0 ) THEN
+         CALL XERBLA( 'DTGSEN', -INFO )
+         RETURN
+      ELSE IF( LQUERY ) THEN
+         RETURN
+      END IF
+*
+*     Quick return if possible.
+*
+      IF( M.EQ.N .OR. M.EQ.0 ) THEN
+         IF( WANTP ) THEN
+            PL = ONE
+            PR = ONE
+         END IF
+         IF( WANTD ) THEN
+            DSCALE = ZERO
+            DSUM = ONE
+            DO 20 I = 1, N
+               CALL DLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
+               CALL DLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
+   20       CONTINUE
+            DIF( 1 ) = DSCALE*SQRT( DSUM )
+            DIF( 2 ) = DIF( 1 )
+         END IF
+         GO TO 60
+      END IF
+*
+*     Collect the selected blocks at the top-left corner of (A, B).
+*
+      KS = 0
+      PAIR = .FALSE.
+      DO 30 K = 1, N
+         IF( PAIR ) THEN
+            PAIR = .FALSE.
+         ELSE
+*
+            SWAP = SELECT( K )
+            IF( K.LT.N ) THEN
+               IF( A( K+1, K ).NE.ZERO ) THEN
+                  PAIR = .TRUE.
+                  SWAP = SWAP .OR. SELECT( K+1 )
+               END IF
+            END IF
+*
+            IF( SWAP ) THEN
+               KS = KS + 1
+*
+*              Swap the K-th block to position KS.
+*              Perform the reordering of diagonal blocks in (A, B)
+*              by orthogonal transformation matrices and update
+*              Q and Z accordingly (if requested):
+*
+               KK = K
+               IF( K.NE.KS )
+     $            CALL DTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
+     $                         Z, LDZ, KK, KS, WORK, LWORK, IERR )
+*
+               IF( IERR.GT.0 ) THEN
+*
+*                 Swap is rejected: exit.
+*
+                  INFO = 1
+                  IF( WANTP ) THEN
+                     PL = ZERO
+                     PR = ZERO
+                  END IF
+                  IF( WANTD ) THEN
+                     DIF( 1 ) = ZERO
+                     DIF( 2 ) = ZERO
+                  END IF
+                  GO TO 60
+               END IF
+*
+               IF( PAIR )
+     $            KS = KS + 1
+            END IF
+         END IF
+   30 CONTINUE
+      IF( WANTP ) THEN
+*
+*        Solve generalized Sylvester equation for R and L
+*        and compute PL and PR.
+*
+         N1 = M
+         N2 = N - M
+         I = N1 + 1
+         IJB = 0
+         CALL DLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
+         CALL DLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
+     $                N1 )
+         CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
+     $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
+     $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
+     $                LWORK-2*N1*N2, IWORK, IERR )
+*
+*        Estimate the reciprocal of norms of "projections" onto left
+*        and right eigenspaces.
+*
+         RDSCAL = ZERO
+         DSUM = ONE
+         CALL DLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
+         PL = RDSCAL*SQRT( DSUM )
+         IF( PL.EQ.ZERO ) THEN
+            PL = ONE
+         ELSE
+            PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
+         END IF
+         RDSCAL = ZERO
+         DSUM = ONE
+         CALL DLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
+         PR = RDSCAL*SQRT( DSUM )
+         IF( PR.EQ.ZERO ) THEN
+            PR = ONE
+         ELSE
+            PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
+         END IF
+      END IF
+*
+      IF( WANTD ) THEN
+*
+*        Compute estimates of Difu and Difl.
+*
+         IF( WANTD1 ) THEN
+            N1 = M
+            N2 = N - M
+            I = N1 + 1
+            IJB = IDIFJB
+*
+*           Frobenius norm-based Difu-estimate.
+*
+            CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
+     $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
+     $                   N1, DSCALE, DIF( 1 ), WORK( 2*N1*N2+1 ),
+     $                   LWORK-2*N1*N2, IWORK, IERR )
+*
+*           Frobenius norm-based Difl-estimate.
+*
+            CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
+     $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
+     $                   N2, DSCALE, DIF( 2 ), WORK( 2*N1*N2+1 ),
+     $                   LWORK-2*N1*N2, IWORK, IERR )
+         ELSE
+*
+*
+*           Compute 1-norm-based estimates of Difu and Difl using
+*           reversed communication with DLACN2. In each step a
+*           generalized Sylvester equation or a transposed variant
+*           is solved.
+*
+            KASE = 0
+            N1 = M
+            N2 = N - M
+            I = N1 + 1
+            IJB = 0
+            MN2 = 2*N1*N2
+*
+*           1-norm-based estimate of Difu.
+*
+   40       CONTINUE
+            CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 1 ),
+     $                   KASE, ISAVE )
+            IF( KASE.NE.0 ) THEN
+               IF( KASE.EQ.1 ) THEN
+*
+*                 Solve generalized Sylvester equation.
+*
+                  CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
+     $                         WORK, N1, B, LDB, B( I, I ), LDB,
+     $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
+     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
+     $                         IERR )
+               ELSE
+*
+*                 Solve the transposed variant.
+*
+                  CALL DTGSYL( 'T', IJB, N1, N2, A, LDA, A( I, I ), LDA,
+     $                         WORK, N1, B, LDB, B( I, I ), LDB,
+     $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
+     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
+     $                         IERR )
+               END IF
+               GO TO 40
+            END IF
+            DIF( 1 ) = DSCALE / DIF( 1 )
+*
+*           1-norm-based estimate of Difl.
+*
+   50       CONTINUE
+            CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 2 ),
+     $                   KASE, ISAVE )
+            IF( KASE.NE.0 ) THEN
+               IF( KASE.EQ.1 ) THEN
+*
+*                 Solve generalized Sylvester equation.
+*
+                  CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
+     $                         WORK, N2, B( I, I ), LDB, B, LDB,
+     $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
+     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
+     $                         IERR )
+               ELSE
+*
+*                 Solve the transposed variant.
+*
+                  CALL DTGSYL( 'T', IJB, N2, N1, A( I, I ), LDA, A, LDA,
+     $                         WORK, N2, B( I, I ), LDB, B, LDB,
+     $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
+     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
+     $                         IERR )
+               END IF
+               GO TO 50
+            END IF
+            DIF( 2 ) = DSCALE / DIF( 2 )
+*
+         END IF
+      END IF
+*
+   60 CONTINUE
+*
+*     Compute generalized eigenvalues of reordered pair (A, B) and
+*     normalize the generalized Schur form.
+*
+      PAIR = .FALSE.
+      DO 80 K = 1, N
+         IF( PAIR ) THEN
+            PAIR = .FALSE.
+         ELSE
+*
+            IF( K.LT.N ) THEN
+               IF( A( K+1, K ).NE.ZERO ) THEN
+                  PAIR = .TRUE.
+               END IF
+            END IF
+*
+            IF( PAIR ) THEN
+*
+*             Compute the eigenvalue(s) at position K.
+*
+               WORK( 1 ) = A( K, K )
+               WORK( 2 ) = A( K+1, K )
+               WORK( 3 ) = A( K, K+1 )
+               WORK( 4 ) = A( K+1, K+1 )
+               WORK( 5 ) = B( K, K )
+               WORK( 6 ) = B( K+1, K )
+               WORK( 7 ) = B( K, K+1 )
+               WORK( 8 ) = B( K+1, K+1 )
+               CALL DLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA( K ),
+     $                     BETA( K+1 ), ALPHAR( K ), ALPHAR( K+1 ),
+     $                     ALPHAI( K ) )
+               ALPHAI( K+1 ) = -ALPHAI( K )
+*
+            ELSE
+*
+               IF( SIGN( ONE, B( K, K ) ).LT.ZERO ) THEN
+*
+*                 If B(K,K) is negative, make it positive
+*
+                  DO 70 I = 1, N
+                     A( K, I ) = -A( K, I )
+                     B( K, I ) = -B( K, I )
+                     Q( I, K ) = -Q( I, K )
+   70             CONTINUE
+               END IF
+*
+               ALPHAR( K ) = A( K, K )
+               ALPHAI( K ) = ZERO
+               BETA( K ) = B( K, K )
+*
+            END IF
+         END IF
+   80 CONTINUE
+*
+      WORK( 1 ) = LWMIN
+      IWORK( 1 ) = LIWMIN
+*
+      RETURN
+*
+*     End of DTGSEN
+*
+      END
-- 
cgit