From 277d1edfa17bf3719d90ddbac8e31f6181e952c3 Mon Sep 17 00:00:00 2001
From: Sandeep Gupta
Date: Sun, 18 Jun 2017 23:55:40 +0530
Subject: First commit

---
 src/fortran/lapack/dgegs.f | 438 +++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 438 insertions(+)
 create mode 100644 src/fortran/lapack/dgegs.f

(limited to 'src/fortran/lapack/dgegs.f')

diff --git a/src/fortran/lapack/dgegs.f b/src/fortran/lapack/dgegs.f
new file mode 100644
index 00000000..85c32531
--- /dev/null
+++ b/src/fortran/lapack/dgegs.f
@@ -0,0 +1,438 @@
+      SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
+     $                  ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
+     $                  LWORK, INFO )
+*
+*  -- LAPACK driver routine (version 3.1) --
+*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+*     November 2006
+*
+*     .. Scalar Arguments ..
+      CHARACTER          JOBVSL, JOBVSR
+      INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
+*     ..
+*     .. Array Arguments ..
+      DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
+     $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
+     $                   VSR( LDVSR, * ), WORK( * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  This routine is deprecated and has been replaced by routine DGGES.
+*
+*  DGEGS computes the eigenvalues, real Schur form, and, optionally,
+*  left and or/right Schur vectors of a real matrix pair (A,B).
+*  Given two square matrices A and B, the generalized real Schur
+*  factorization has the form
+*
+*    A = Q*S*Z**T,  B = Q*T*Z**T
+*
+*  where Q and Z are orthogonal matrices, T is upper triangular, and S
+*  is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
+*  blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
+*  of eigenvalues of (A,B).  The columns of Q are the left Schur vectors
+*  and the columns of Z are the right Schur vectors.
+*
+*  If only the eigenvalues of (A,B) are needed, the driver routine
+*  DGEGV should be used instead.  See DGEGV for a description of the
+*  eigenvalues of the generalized nonsymmetric eigenvalue problem
+*  (GNEP).
+*
+*  Arguments
+*  =========
+*
+*  JOBVSL  (input) CHARACTER*1
+*          = 'N':  do not compute the left Schur vectors;
+*          = 'V':  compute the left Schur vectors (returned in VSL).
+*
+*  JOBVSR  (input) CHARACTER*1
+*          = 'N':  do not compute the right Schur vectors;
+*          = 'V':  compute the right Schur vectors (returned in VSR).
+*
+*  N       (input) INTEGER
+*          The order of the matrices A, B, VSL, and VSR.  N >= 0.
+*
+*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
+*          On entry, the matrix A.
+*          On exit, the upper quasi-triangular matrix S from the
+*          generalized real Schur factorization.
+*
+*  LDA     (input) INTEGER
+*          The leading dimension of A.  LDA >= max(1,N).
+*
+*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
+*          On entry, the matrix B.
+*          On exit, the upper triangular matrix T from the generalized
+*          real Schur factorization.
+*
+*  LDB     (input) INTEGER
+*          The leading dimension of B.  LDB >= max(1,N).
+*
+*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
+*          The real parts of each scalar alpha defining an eigenvalue
+*          of GNEP.
+*
+*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
+*          The imaginary parts of each scalar alpha defining an
+*          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th
+*          eigenvalue is real; if positive, then the j-th and (j+1)-st
+*          eigenvalues are a complex conjugate pair, with
+*          ALPHAI(j+1) = -ALPHAI(j).
+*
+*  BETA    (output) DOUBLE PRECISION array, dimension (N)
+*          The scalars beta that define the eigenvalues of GNEP.
+*          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
+*          beta = BETA(j) represent the j-th eigenvalue of the matrix
+*          pair (A,B), in one of the forms lambda = alpha/beta or
+*          mu = beta/alpha.  Since either lambda or mu may overflow,
+*          they should not, in general, be computed.
+*
+*  VSL     (output) DOUBLE PRECISION array, dimension (LDVSL,N)
+*          If JOBVSL = 'V', the matrix of left Schur vectors Q.
+*          Not referenced if JOBVSL = 'N'.
+*
+*  LDVSL   (input) INTEGER
+*          The leading dimension of the matrix VSL. LDVSL >=1, and
+*          if JOBVSL = 'V', LDVSL >= N.
+*
+*  VSR     (output) DOUBLE PRECISION array, dimension (LDVSR,N)
+*          If JOBVSR = 'V', the matrix of right Schur vectors Z.
+*          Not referenced if JOBVSR = 'N'.
+*
+*  LDVSR   (input) INTEGER
+*          The leading dimension of the matrix VSR. LDVSR >= 1, and
+*          if JOBVSR = 'V', LDVSR >= N.
+*
+*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+*  LWORK   (input) INTEGER
+*          The dimension of the array WORK.  LWORK >= max(1,4*N).
+*          For good performance, LWORK must generally be larger.
+*          To compute the optimal value of LWORK, call ILAENV to get
+*          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute:
+*          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR
+*          The optimal LWORK is  2*N + N*(NB+1).
+*
+*          If LWORK = -1, then a workspace query is assumed; the routine
+*          only calculates the optimal size of the WORK array, returns
+*          this value as the first entry of the WORK array, and no error
+*          message related to LWORK is issued by XERBLA.
+*
+*  INFO    (output) INTEGER
+*          = 0:  successful exit
+*          < 0:  if INFO = -i, the i-th argument had an illegal value.
+*          = 1,...,N:
+*                The QZ iteration failed.  (A,B) are not in Schur
+*                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
+*                be correct for j=INFO+1,...,N.
+*          > N:  errors that usually indicate LAPACK problems:
+*                =N+1: error return from DGGBAL
+*                =N+2: error return from DGEQRF
+*                =N+3: error return from DORMQR
+*                =N+4: error return from DORGQR
+*                =N+5: error return from DGGHRD
+*                =N+6: error return from DHGEQZ (other than failed
+*                                                iteration)
+*                =N+7: error return from DGGBAK (computing VSL)
+*                =N+8: error return from DGGBAK (computing VSR)
+*                =N+9: error return from DLASCL (various places)
+*
+*  =====================================================================
+*
+*     .. Parameters ..
+      DOUBLE PRECISION   ZERO, ONE
+      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
+*     ..
+*     .. Local Scalars ..
+      LOGICAL            ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
+      INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
+     $                   IRIGHT, IROWS, ITAU, IWORK, LOPT, LWKMIN,
+     $                   LWKOPT, NB, NB1, NB2, NB3
+      DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
+     $                   SAFMIN, SMLNUM
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
+     $                   DLASCL, DLASET, DORGQR, DORMQR, XERBLA
+*     ..
+*     .. External Functions ..
+      LOGICAL            LSAME
+      INTEGER            ILAENV
+      DOUBLE PRECISION   DLAMCH, DLANGE
+      EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          INT, MAX
+*     ..
+*     .. Executable Statements ..
+*
+*     Decode the input arguments
+*
+      IF( LSAME( JOBVSL, 'N' ) ) THEN
+         IJOBVL = 1
+         ILVSL = .FALSE.
+      ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
+         IJOBVL = 2
+         ILVSL = .TRUE.
+      ELSE
+         IJOBVL = -1
+         ILVSL = .FALSE.
+      END IF
+*
+      IF( LSAME( JOBVSR, 'N' ) ) THEN
+         IJOBVR = 1
+         ILVSR = .FALSE.
+      ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
+         IJOBVR = 2
+         ILVSR = .TRUE.
+      ELSE
+         IJOBVR = -1
+         ILVSR = .FALSE.
+      END IF
+*
+*     Test the input arguments
+*
+      LWKMIN = MAX( 4*N, 1 )
+      LWKOPT = LWKMIN
+      WORK( 1 ) = LWKOPT
+      LQUERY = ( LWORK.EQ.-1 )
+      INFO = 0
+      IF( IJOBVL.LE.0 ) THEN
+         INFO = -1
+      ELSE IF( IJOBVR.LE.0 ) THEN
+         INFO = -2
+      ELSE IF( N.LT.0 ) THEN
+         INFO = -3
+      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+         INFO = -5
+      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+         INFO = -7
+      ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
+         INFO = -12
+      ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
+         INFO = -14
+      ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
+         INFO = -16
+      END IF
+*
+      IF( INFO.EQ.0 ) THEN
+         NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 )
+         NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 )
+         NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 )
+         NB = MAX( NB1, NB2, NB3 )
+         LOPT = 2*N + N*( NB+1 )
+         WORK( 1 ) = LOPT
+      END IF
+*
+      IF( INFO.NE.0 ) THEN
+         CALL XERBLA( 'DGEGS ', -INFO )
+         RETURN
+      ELSE IF( LQUERY ) THEN
+         RETURN
+      END IF
+*
+*     Quick return if possible
+*
+      IF( N.EQ.0 )
+     $   RETURN
+*
+*     Get machine constants
+*
+      EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
+      SAFMIN = DLAMCH( 'S' )
+      SMLNUM = N*SAFMIN / EPS
+      BIGNUM = ONE / SMLNUM
+*
+*     Scale A if max element outside range [SMLNUM,BIGNUM]
+*
+      ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
+      ILASCL = .FALSE.
+      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+         ANRMTO = SMLNUM
+         ILASCL = .TRUE.
+      ELSE IF( ANRM.GT.BIGNUM ) THEN
+         ANRMTO = BIGNUM
+         ILASCL = .TRUE.
+      END IF
+*
+      IF( ILASCL ) THEN
+         CALL DLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
+         IF( IINFO.NE.0 ) THEN
+            INFO = N + 9
+            RETURN
+         END IF
+      END IF
+*
+*     Scale B if max element outside range [SMLNUM,BIGNUM]
+*
+      BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
+      ILBSCL = .FALSE.
+      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
+         BNRMTO = SMLNUM
+         ILBSCL = .TRUE.
+      ELSE IF( BNRM.GT.BIGNUM ) THEN
+         BNRMTO = BIGNUM
+         ILBSCL = .TRUE.
+      END IF
+*
+      IF( ILBSCL ) THEN
+         CALL DLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
+         IF( IINFO.NE.0 ) THEN
+            INFO = N + 9
+            RETURN
+         END IF
+      END IF
+*
+*     Permute the matrix to make it more nearly triangular
+*     Workspace layout:  (2*N words -- "work..." not actually used)
+*        left_permutation, right_permutation, work...
+*
+      ILEFT = 1
+      IRIGHT = N + 1
+      IWORK = IRIGHT + N
+      CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
+     $             WORK( IRIGHT ), WORK( IWORK ), IINFO )
+      IF( IINFO.NE.0 ) THEN
+         INFO = N + 1
+         GO TO 10
+      END IF
+*
+*     Reduce B to triangular form, and initialize VSL and/or VSR
+*     Workspace layout:  ("work..." must have at least N words)
+*        left_permutation, right_permutation, tau, work...
+*
+      IROWS = IHI + 1 - ILO
+      ICOLS = N + 1 - ILO
+      ITAU = IWORK
+      IWORK = ITAU + IROWS
+      CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
+     $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
+      IF( IINFO.GE.0 )
+     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
+      IF( IINFO.NE.0 ) THEN
+         INFO = N + 2
+         GO TO 10
+      END IF
+*
+      CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
+     $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
+     $             LWORK+1-IWORK, IINFO )
+      IF( IINFO.GE.0 )
+     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
+      IF( IINFO.NE.0 ) THEN
+         INFO = N + 3
+         GO TO 10
+      END IF
+*
+      IF( ILVSL ) THEN
+         CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
+         CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
+     $                VSL( ILO+1, ILO ), LDVSL )
+         CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
+     $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
+     $                IINFO )
+         IF( IINFO.GE.0 )
+     $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
+         IF( IINFO.NE.0 ) THEN
+            INFO = N + 4
+            GO TO 10
+         END IF
+      END IF
+*
+      IF( ILVSR )
+     $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
+*
+*     Reduce to generalized Hessenberg form
+*
+      CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
+     $             LDVSL, VSR, LDVSR, IINFO )
+      IF( IINFO.NE.0 ) THEN
+         INFO = N + 5
+         GO TO 10
+      END IF
+*
+*     Perform QZ algorithm, computing Schur vectors if desired
+*     Workspace layout:  ("work..." must have at least 1 word)
+*        left_permutation, right_permutation, work...
+*
+      IWORK = ITAU
+      CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
+     $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
+     $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
+      IF( IINFO.GE.0 )
+     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
+      IF( IINFO.NE.0 ) THEN
+         IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
+            INFO = IINFO
+         ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
+            INFO = IINFO - N
+         ELSE
+            INFO = N + 6
+         END IF
+         GO TO 10
+      END IF
+*
+*     Apply permutation to VSL and VSR
+*
+      IF( ILVSL ) THEN
+         CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
+     $                WORK( IRIGHT ), N, VSL, LDVSL, IINFO )
+         IF( IINFO.NE.0 ) THEN
+            INFO = N + 7
+            GO TO 10
+         END IF
+      END IF
+      IF( ILVSR ) THEN
+         CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
+     $                WORK( IRIGHT ), N, VSR, LDVSR, IINFO )
+         IF( IINFO.NE.0 ) THEN
+            INFO = N + 8
+            GO TO 10
+         END IF
+      END IF
+*
+*     Undo scaling
+*
+      IF( ILASCL ) THEN
+         CALL DLASCL( 'H', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
+         IF( IINFO.NE.0 ) THEN
+            INFO = N + 9
+            RETURN
+         END IF
+         CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAR, N,
+     $                IINFO )
+         IF( IINFO.NE.0 ) THEN
+            INFO = N + 9
+            RETURN
+         END IF
+         CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAI, N,
+     $                IINFO )
+         IF( IINFO.NE.0 ) THEN
+            INFO = N + 9
+            RETURN
+         END IF
+      END IF
+*
+      IF( ILBSCL ) THEN
+         CALL DLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
+         IF( IINFO.NE.0 ) THEN
+            INFO = N + 9
+            RETURN
+         END IF
+         CALL DLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
+         IF( IINFO.NE.0 ) THEN
+            INFO = N + 9
+            RETURN
+         END IF
+      END IF
+*
+   10 CONTINUE
+      WORK( 1 ) = LWKOPT
+*
+      RETURN
+*
+*     End of DGEGS
+*
+      END
-- 
cgit