From 277d1edfa17bf3719d90ddbac8e31f6181e952c3 Mon Sep 17 00:00:00 2001
From: Sandeep Gupta
Date: Sun, 18 Jun 2017 23:55:40 +0530
Subject: First commit

---
 src/fortran/lapack/dgebrd.f | 268 ++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 268 insertions(+)
 create mode 100644 src/fortran/lapack/dgebrd.f

(limited to 'src/fortran/lapack/dgebrd.f')

diff --git a/src/fortran/lapack/dgebrd.f b/src/fortran/lapack/dgebrd.f
new file mode 100644
index 00000000..6544715d
--- /dev/null
+++ b/src/fortran/lapack/dgebrd.f
@@ -0,0 +1,268 @@
+      SUBROUTINE DGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
+     $                   INFO )
+*
+*  -- LAPACK routine (version 3.1) --
+*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+*     November 2006
+*
+*     .. Scalar Arguments ..
+      INTEGER            INFO, LDA, LWORK, M, N
+*     ..
+*     .. Array Arguments ..
+      DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
+     $                   TAUQ( * ), WORK( * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  DGEBRD reduces a general real M-by-N matrix A to upper or lower
+*  bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
+*
+*  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
+*
+*  Arguments
+*  =========
+*
+*  M       (input) INTEGER
+*          The number of rows in the matrix A.  M >= 0.
+*
+*  N       (input) INTEGER
+*          The number of columns in the matrix A.  N >= 0.
+*
+*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+*          On entry, the M-by-N general matrix to be reduced.
+*          On exit,
+*          if m >= n, the diagonal and the first superdiagonal are
+*            overwritten with the upper bidiagonal matrix B; the
+*            elements below the diagonal, with the array TAUQ, represent
+*            the orthogonal matrix Q as a product of elementary
+*            reflectors, and the elements above the first superdiagonal,
+*            with the array TAUP, represent the orthogonal matrix P as
+*            a product of elementary reflectors;
+*          if m < n, the diagonal and the first subdiagonal are
+*            overwritten with the lower bidiagonal matrix B; the
+*            elements below the first subdiagonal, with the array TAUQ,
+*            represent the orthogonal matrix Q as a product of
+*            elementary reflectors, and the elements above the diagonal,
+*            with the array TAUP, represent the orthogonal matrix P as
+*            a product of elementary reflectors.
+*          See Further Details.
+*
+*  LDA     (input) INTEGER
+*          The leading dimension of the array A.  LDA >= max(1,M).
+*
+*  D       (output) DOUBLE PRECISION array, dimension (min(M,N))
+*          The diagonal elements of the bidiagonal matrix B:
+*          D(i) = A(i,i).
+*
+*  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
+*          The off-diagonal elements of the bidiagonal matrix B:
+*          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
+*          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
+*
+*  TAUQ    (output) DOUBLE PRECISION array dimension (min(M,N))
+*          The scalar factors of the elementary reflectors which
+*          represent the orthogonal matrix Q. See Further Details.
+*
+*  TAUP    (output) DOUBLE PRECISION array, dimension (min(M,N))
+*          The scalar factors of the elementary reflectors which
+*          represent the orthogonal matrix P. See Further Details.
+*
+*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+*  LWORK   (input) INTEGER
+*          The length of the array WORK.  LWORK >= max(1,M,N).
+*          For optimum performance LWORK >= (M+N)*NB, where NB
+*          is the optimal blocksize.
+*
+*          If LWORK = -1, then a workspace query is assumed; the routine
+*          only calculates the optimal size of the WORK array, returns
+*          this value as the first entry of the WORK array, and no error
+*          message related to LWORK is issued by XERBLA.
+*
+*  INFO    (output) INTEGER
+*          = 0:  successful exit
+*          < 0:  if INFO = -i, the i-th argument had an illegal value.
+*
+*  Further Details
+*  ===============
+*
+*  The matrices Q and P are represented as products of elementary
+*  reflectors:
+*
+*  If m >= n,
+*
+*     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
+*
+*  Each H(i) and G(i) has the form:
+*
+*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
+*
+*  where tauq and taup are real scalars, and v and u are real vectors;
+*  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
+*  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
+*  tauq is stored in TAUQ(i) and taup in TAUP(i).
+*
+*  If m < n,
+*
+*     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
+*
+*  Each H(i) and G(i) has the form:
+*
+*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
+*
+*  where tauq and taup are real scalars, and v and u are real vectors;
+*  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
+*  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
+*  tauq is stored in TAUQ(i) and taup in TAUP(i).
+*
+*  The contents of A on exit are illustrated by the following examples:
+*
+*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
+*
+*    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
+*    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
+*    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
+*    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
+*    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
+*    (  v1  v2  v3  v4  v5 )
+*
+*  where d and e denote diagonal and off-diagonal elements of B, vi
+*  denotes an element of the vector defining H(i), and ui an element of
+*  the vector defining G(i).
+*
+*  =====================================================================
+*
+*     .. Parameters ..
+      DOUBLE PRECISION   ONE
+      PARAMETER          ( ONE = 1.0D+0 )
+*     ..
+*     .. Local Scalars ..
+      LOGICAL            LQUERY
+      INTEGER            I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB,
+     $                   NBMIN, NX
+      DOUBLE PRECISION   WS
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           DGEBD2, DGEMM, DLABRD, XERBLA
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          DBLE, MAX, MIN
+*     ..
+*     .. External Functions ..
+      INTEGER            ILAENV
+      EXTERNAL           ILAENV
+*     ..
+*     .. Executable Statements ..
+*
+*     Test the input parameters
+*
+      INFO = 0
+      NB = MAX( 1, ILAENV( 1, 'DGEBRD', ' ', M, N, -1, -1 ) )
+      LWKOPT = ( M+N )*NB
+      WORK( 1 ) = DBLE( LWKOPT )
+      LQUERY = ( LWORK.EQ.-1 )
+      IF( M.LT.0 ) THEN
+         INFO = -1
+      ELSE IF( N.LT.0 ) THEN
+         INFO = -2
+      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+         INFO = -4
+      ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN
+         INFO = -10
+      END IF
+      IF( INFO.LT.0 ) THEN
+         CALL XERBLA( 'DGEBRD', -INFO )
+         RETURN
+      ELSE IF( LQUERY ) THEN
+         RETURN
+      END IF
+*
+*     Quick return if possible
+*
+      MINMN = MIN( M, N )
+      IF( MINMN.EQ.0 ) THEN
+         WORK( 1 ) = 1
+         RETURN
+      END IF
+*
+      WS = MAX( M, N )
+      LDWRKX = M
+      LDWRKY = N
+*
+      IF( NB.GT.1 .AND. NB.LT.MINMN ) THEN
+*
+*        Set the crossover point NX.
+*
+         NX = MAX( NB, ILAENV( 3, 'DGEBRD', ' ', M, N, -1, -1 ) )
+*
+*        Determine when to switch from blocked to unblocked code.
+*
+         IF( NX.LT.MINMN ) THEN
+            WS = ( M+N )*NB
+            IF( LWORK.LT.WS ) THEN
+*
+*              Not enough work space for the optimal NB, consider using
+*              a smaller block size.
+*
+               NBMIN = ILAENV( 2, 'DGEBRD', ' ', M, N, -1, -1 )
+               IF( LWORK.GE.( M+N )*NBMIN ) THEN
+                  NB = LWORK / ( M+N )
+               ELSE
+                  NB = 1
+                  NX = MINMN
+               END IF
+            END IF
+         END IF
+      ELSE
+         NX = MINMN
+      END IF
+*
+      DO 30 I = 1, MINMN - NX, NB
+*
+*        Reduce rows and columns i:i+nb-1 to bidiagonal form and return
+*        the matrices X and Y which are needed to update the unreduced
+*        part of the matrix
+*
+         CALL DLABRD( M-I+1, N-I+1, NB, A( I, I ), LDA, D( I ), E( I ),
+     $                TAUQ( I ), TAUP( I ), WORK, LDWRKX,
+     $                WORK( LDWRKX*NB+1 ), LDWRKY )
+*
+*        Update the trailing submatrix A(i+nb:m,i+nb:n), using an update
+*        of the form  A := A - V*Y' - X*U'
+*
+         CALL DGEMM( 'No transpose', 'Transpose', M-I-NB+1, N-I-NB+1,
+     $               NB, -ONE, A( I+NB, I ), LDA,
+     $               WORK( LDWRKX*NB+NB+1 ), LDWRKY, ONE,
+     $               A( I+NB, I+NB ), LDA )
+         CALL DGEMM( 'No transpose', 'No transpose', M-I-NB+1, N-I-NB+1,
+     $               NB, -ONE, WORK( NB+1 ), LDWRKX, A( I, I+NB ), LDA,
+     $               ONE, A( I+NB, I+NB ), LDA )
+*
+*        Copy diagonal and off-diagonal elements of B back into A
+*
+         IF( M.GE.N ) THEN
+            DO 10 J = I, I + NB - 1
+               A( J, J ) = D( J )
+               A( J, J+1 ) = E( J )
+   10       CONTINUE
+         ELSE
+            DO 20 J = I, I + NB - 1
+               A( J, J ) = D( J )
+               A( J+1, J ) = E( J )
+   20       CONTINUE
+         END IF
+   30 CONTINUE
+*
+*     Use unblocked code to reduce the remainder of the matrix
+*
+      CALL DGEBD2( M-I+1, N-I+1, A( I, I ), LDA, D( I ), E( I ),
+     $             TAUQ( I ), TAUP( I ), WORK, IINFO )
+      WORK( 1 ) = WS
+      RETURN
+*
+*     End of DGEBRD
+*
+      END
-- 
cgit