summaryrefslogtreecommitdiff
path: root/src/lib/lapack/zhgeqz.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/lapack/zhgeqz.f')
-rw-r--r--src/lib/lapack/zhgeqz.f759
1 files changed, 0 insertions, 759 deletions
diff --git a/src/lib/lapack/zhgeqz.f b/src/lib/lapack/zhgeqz.f
deleted file mode 100644
index 6a9403bd..00000000
--- a/src/lib/lapack/zhgeqz.f
+++ /dev/null
@@ -1,759 +0,0 @@
- SUBROUTINE ZHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
- $ ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,
- $ RWORK, INFO )
-*
-* -- LAPACK routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- CHARACTER COMPQ, COMPZ, JOB
- INTEGER IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION RWORK( * )
- COMPLEX*16 ALPHA( * ), BETA( * ), H( LDH, * ),
- $ Q( LDQ, * ), T( LDT, * ), WORK( * ),
- $ Z( LDZ, * )
-* ..
-*
-* Purpose
-* =======
-*
-* ZHGEQZ computes the eigenvalues of a complex matrix pair (H,T),
-* where H is an upper Hessenberg matrix and T is upper triangular,
-* using the single-shift QZ method.
-* Matrix pairs of this type are produced by the reduction to
-* generalized upper Hessenberg form of a complex matrix pair (A,B):
-*
-* A = Q1*H*Z1**H, B = Q1*T*Z1**H,
-*
-* as computed by ZGGHRD.
-*
-* If JOB='S', then the Hessenberg-triangular pair (H,T) is
-* also reduced to generalized Schur form,
-*
-* H = Q*S*Z**H, T = Q*P*Z**H,
-*
-* where Q and Z are unitary matrices and S and P are upper triangular.
-*
-* Optionally, the unitary matrix Q from the generalized Schur
-* factorization may be postmultiplied into an input matrix Q1, and the
-* unitary matrix Z may be postmultiplied into an input matrix Z1.
-* If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced
-* the matrix pair (A,B) to generalized Hessenberg form, then the output
-* matrices Q1*Q and Z1*Z are the unitary factors from the generalized
-* Schur factorization of (A,B):
-*
-* A = (Q1*Q)*S*(Z1*Z)**H, B = (Q1*Q)*P*(Z1*Z)**H.
-*
-* To avoid overflow, eigenvalues of the matrix pair (H,T)
-* (equivalently, of (A,B)) are computed as a pair of complex values
-* (alpha,beta). If beta is nonzero, lambda = alpha / beta is an
-* eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)
-* A*x = lambda*B*x
-* and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
-* alternate form of the GNEP
-* mu*A*y = B*y.
-* The values of alpha and beta for the i-th eigenvalue can be read
-* directly from the generalized Schur form: alpha = S(i,i),
-* beta = P(i,i).
-*
-* Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
-* Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
-* pp. 241--256.
-*
-* Arguments
-* =========
-*
-* JOB (input) CHARACTER*1
-* = 'E': Compute eigenvalues only;
-* = 'S': Computer eigenvalues and the Schur form.
-*
-* COMPQ (input) CHARACTER*1
-* = 'N': Left Schur vectors (Q) are not computed;
-* = 'I': Q is initialized to the unit matrix and the matrix Q
-* of left Schur vectors of (H,T) is returned;
-* = 'V': Q must contain a unitary matrix Q1 on entry and
-* the product Q1*Q is returned.
-*
-* COMPZ (input) CHARACTER*1
-* = 'N': Right Schur vectors (Z) are not computed;
-* = 'I': Q is initialized to the unit matrix and the matrix Z
-* of right Schur vectors of (H,T) is returned;
-* = 'V': Z must contain a unitary matrix Z1 on entry and
-* the product Z1*Z is returned.
-*
-* N (input) INTEGER
-* The order of the matrices H, T, Q, and Z. N >= 0.
-*
-* ILO (input) INTEGER
-* IHI (input) INTEGER
-* ILO and IHI mark the rows and columns of H which are in
-* Hessenberg form. It is assumed that A is already upper
-* triangular in rows and columns 1:ILO-1 and IHI+1:N.
-* If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
-*
-* H (input/output) COMPLEX*16 array, dimension (LDH, N)
-* On entry, the N-by-N upper Hessenberg matrix H.
-* On exit, if JOB = 'S', H contains the upper triangular
-* matrix S from the generalized Schur factorization.
-* If JOB = 'E', the diagonal of H matches that of S, but
-* the rest of H is unspecified.
-*
-* LDH (input) INTEGER
-* The leading dimension of the array H. LDH >= max( 1, N ).
-*
-* T (input/output) COMPLEX*16 array, dimension (LDT, N)
-* On entry, the N-by-N upper triangular matrix T.
-* On exit, if JOB = 'S', T contains the upper triangular
-* matrix P from the generalized Schur factorization.
-* If JOB = 'E', the diagonal of T matches that of P, but
-* the rest of T is unspecified.
-*
-* LDT (input) INTEGER
-* The leading dimension of the array T. LDT >= max( 1, N ).
-*
-* ALPHA (output) COMPLEX*16 array, dimension (N)
-* The complex scalars alpha that define the eigenvalues of
-* GNEP. ALPHA(i) = S(i,i) in the generalized Schur
-* factorization.
-*
-* BETA (output) COMPLEX*16 array, dimension (N)
-* The real non-negative scalars beta that define the
-* eigenvalues of GNEP. BETA(i) = P(i,i) in the generalized
-* Schur factorization.
-*
-* Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
-* represent the j-th eigenvalue of the matrix pair (A,B), in
-* one of the forms lambda = alpha/beta or mu = beta/alpha.
-* Since either lambda or mu may overflow, they should not,
-* in general, be computed.
-*
-* Q (input/output) COMPLEX*16 array, dimension (LDQ, N)
-* On entry, if COMPZ = 'V', the unitary matrix Q1 used in the
-* reduction of (A,B) to generalized Hessenberg form.
-* On exit, if COMPZ = 'I', the unitary matrix of left Schur
-* vectors of (H,T), and if COMPZ = 'V', the unitary matrix of
-* left Schur vectors of (A,B).
-* Not referenced if COMPZ = 'N'.
-*
-* LDQ (input) INTEGER
-* The leading dimension of the array Q. LDQ >= 1.
-* If COMPQ='V' or 'I', then LDQ >= N.
-*
-* Z (input/output) COMPLEX*16 array, dimension (LDZ, N)
-* On entry, if COMPZ = 'V', the unitary matrix Z1 used in the
-* reduction of (A,B) to generalized Hessenberg form.
-* On exit, if COMPZ = 'I', the unitary matrix of right Schur
-* vectors of (H,T), and if COMPZ = 'V', the unitary matrix of
-* right Schur vectors of (A,B).
-* Not referenced if COMPZ = 'N'.
-*
-* LDZ (input) INTEGER
-* The leading dimension of the array Z. LDZ >= 1.
-* If COMPZ='V' or 'I', then LDZ >= N.
-*
-* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
-* On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK. LWORK >= max(1,N).
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
-*
-* RWORK (workspace) DOUBLE PRECISION array, dimension (N)
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-* = 1,...,N: the QZ iteration did not converge. (H,T) is not
-* in Schur form, but ALPHA(i) and BETA(i),
-* i=INFO+1,...,N should be correct.
-* = N+1,...,2*N: the shift calculation failed. (H,T) is not
-* in Schur form, but ALPHA(i) and BETA(i),
-* i=INFO-N+1,...,N should be correct.
-*
-* Further Details
-* ===============
-*
-* We assume that complex ABS works as long as its value is less than
-* overflow.
-*
-* =====================================================================
-*
-* .. Parameters ..
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- DOUBLE PRECISION HALF
- PARAMETER ( HALF = 0.5D+0 )
-* ..
-* .. Local Scalars ..
- LOGICAL ILAZR2, ILAZRO, ILQ, ILSCHR, ILZ, LQUERY
- INTEGER ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST,
- $ ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER,
- $ JR, MAXIT
- DOUBLE PRECISION ABSB, ANORM, ASCALE, ATOL, BNORM, BSCALE, BTOL,
- $ C, SAFMIN, TEMP, TEMP2, TEMPR, ULP
- COMPLEX*16 ABI22, AD11, AD12, AD21, AD22, CTEMP, CTEMP2,
- $ CTEMP3, ESHIFT, RTDISC, S, SHIFT, SIGNBC, T1,
- $ U12, X
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, ZLANHS
- EXTERNAL LSAME, DLAMCH, ZLANHS
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA, ZLARTG, ZLASET, ZROT, ZSCAL
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN,
- $ SQRT
-* ..
-* .. Statement Functions ..
- DOUBLE PRECISION ABS1
-* ..
-* .. Statement Function definitions ..
- ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
-* ..
-* .. Executable Statements ..
-*
-* Decode JOB, COMPQ, COMPZ
-*
- IF( LSAME( JOB, 'E' ) ) THEN
- ILSCHR = .FALSE.
- ISCHUR = 1
- ELSE IF( LSAME( JOB, 'S' ) ) THEN
- ILSCHR = .TRUE.
- ISCHUR = 2
- ELSE
- ISCHUR = 0
- END IF
-*
- IF( LSAME( COMPQ, 'N' ) ) THEN
- ILQ = .FALSE.
- ICOMPQ = 1
- ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
- ILQ = .TRUE.
- ICOMPQ = 2
- ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
- ILQ = .TRUE.
- ICOMPQ = 3
- ELSE
- ICOMPQ = 0
- END IF
-*
- IF( LSAME( COMPZ, 'N' ) ) THEN
- ILZ = .FALSE.
- ICOMPZ = 1
- ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
- ILZ = .TRUE.
- ICOMPZ = 2
- ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
- ILZ = .TRUE.
- ICOMPZ = 3
- ELSE
- ICOMPZ = 0
- END IF
-*
-* Check Argument Values
-*
- INFO = 0
- WORK( 1 ) = MAX( 1, N )
- LQUERY = ( LWORK.EQ.-1 )
- IF( ISCHUR.EQ.0 ) THEN
- INFO = -1
- ELSE IF( ICOMPQ.EQ.0 ) THEN
- INFO = -2
- ELSE IF( ICOMPZ.EQ.0 ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( ILO.LT.1 ) THEN
- INFO = -5
- ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
- INFO = -6
- ELSE IF( LDH.LT.N ) THEN
- INFO = -8
- ELSE IF( LDT.LT.N ) THEN
- INFO = -10
- ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
- INFO = -14
- ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
- INFO = -16
- ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
- INFO = -18
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZHGEQZ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
-*
-* Quick return if possible
-*
-* WORK( 1 ) = CMPLX( 1 )
- IF( N.LE.0 ) THEN
- WORK( 1 ) = DCMPLX( 1 )
- RETURN
- END IF
-*
-* Initialize Q and Z
-*
- IF( ICOMPQ.EQ.3 )
- $ CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
- IF( ICOMPZ.EQ.3 )
- $ CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
-*
-* Machine Constants
-*
- IN = IHI + 1 - ILO
- SAFMIN = DLAMCH( 'S' )
- ULP = DLAMCH( 'E' )*DLAMCH( 'B' )
- ANORM = ZLANHS( 'F', IN, H( ILO, ILO ), LDH, RWORK )
- BNORM = ZLANHS( 'F', IN, T( ILO, ILO ), LDT, RWORK )
- ATOL = MAX( SAFMIN, ULP*ANORM )
- BTOL = MAX( SAFMIN, ULP*BNORM )
- ASCALE = ONE / MAX( SAFMIN, ANORM )
- BSCALE = ONE / MAX( SAFMIN, BNORM )
-*
-*
-* Set Eigenvalues IHI+1:N
-*
- DO 10 J = IHI + 1, N
- ABSB = ABS( T( J, J ) )
- IF( ABSB.GT.SAFMIN ) THEN
- SIGNBC = DCONJG( T( J, J ) / ABSB )
- T( J, J ) = ABSB
- IF( ILSCHR ) THEN
- CALL ZSCAL( J-1, SIGNBC, T( 1, J ), 1 )
- CALL ZSCAL( J, SIGNBC, H( 1, J ), 1 )
- ELSE
- H( J, J ) = H( J, J )*SIGNBC
- END IF
- IF( ILZ )
- $ CALL ZSCAL( N, SIGNBC, Z( 1, J ), 1 )
- ELSE
- T( J, J ) = CZERO
- END IF
- ALPHA( J ) = H( J, J )
- BETA( J ) = T( J, J )
- 10 CONTINUE
-*
-* If IHI < ILO, skip QZ steps
-*
- IF( IHI.LT.ILO )
- $ GO TO 190
-*
-* MAIN QZ ITERATION LOOP
-*
-* Initialize dynamic indices
-*
-* Eigenvalues ILAST+1:N have been found.
-* Column operations modify rows IFRSTM:whatever
-* Row operations modify columns whatever:ILASTM
-*
-* If only eigenvalues are being computed, then
-* IFRSTM is the row of the last splitting row above row ILAST;
-* this is always at least ILO.
-* IITER counts iterations since the last eigenvalue was found,
-* to tell when to use an extraordinary shift.
-* MAXIT is the maximum number of QZ sweeps allowed.
-*
- ILAST = IHI
- IF( ILSCHR ) THEN
- IFRSTM = 1
- ILASTM = N
- ELSE
- IFRSTM = ILO
- ILASTM = IHI
- END IF
- IITER = 0
- ESHIFT = CZERO
- MAXIT = 30*( IHI-ILO+1 )
-*
- DO 170 JITER = 1, MAXIT
-*
-* Check for too many iterations.
-*
- IF( JITER.GT.MAXIT )
- $ GO TO 180
-*
-* Split the matrix if possible.
-*
-* Two tests:
-* 1: H(j,j-1)=0 or j=ILO
-* 2: T(j,j)=0
-*
-* Special case: j=ILAST
-*
- IF( ILAST.EQ.ILO ) THEN
- GO TO 60
- ELSE
- IF( ABS1( H( ILAST, ILAST-1 ) ).LE.ATOL ) THEN
- H( ILAST, ILAST-1 ) = CZERO
- GO TO 60
- END IF
- END IF
-*
- IF( ABS( T( ILAST, ILAST ) ).LE.BTOL ) THEN
- T( ILAST, ILAST ) = CZERO
- GO TO 50
- END IF
-*
-* General case: j<ILAST
-*
- DO 40 J = ILAST - 1, ILO, -1
-*
-* Test 1: for H(j,j-1)=0 or j=ILO
-*
- IF( J.EQ.ILO ) THEN
- ILAZRO = .TRUE.
- ELSE
- IF( ABS1( H( J, J-1 ) ).LE.ATOL ) THEN
- H( J, J-1 ) = CZERO
- ILAZRO = .TRUE.
- ELSE
- ILAZRO = .FALSE.
- END IF
- END IF
-*
-* Test 2: for T(j,j)=0
-*
- IF( ABS( T( J, J ) ).LT.BTOL ) THEN
- T( J, J ) = CZERO
-*
-* Test 1a: Check for 2 consecutive small subdiagonals in A
-*
- ILAZR2 = .FALSE.
- IF( .NOT.ILAZRO ) THEN
- IF( ABS1( H( J, J-1 ) )*( ASCALE*ABS1( H( J+1,
- $ J ) ) ).LE.ABS1( H( J, J ) )*( ASCALE*ATOL ) )
- $ ILAZR2 = .TRUE.
- END IF
-*
-* If both tests pass (1 & 2), i.e., the leading diagonal
-* element of B in the block is zero, split a 1x1 block off
-* at the top. (I.e., at the J-th row/column) The leading
-* diagonal element of the remainder can also be zero, so
-* this may have to be done repeatedly.
-*
- IF( ILAZRO .OR. ILAZR2 ) THEN
- DO 20 JCH = J, ILAST - 1
- CTEMP = H( JCH, JCH )
- CALL ZLARTG( CTEMP, H( JCH+1, JCH ), C, S,
- $ H( JCH, JCH ) )
- H( JCH+1, JCH ) = CZERO
- CALL ZROT( ILASTM-JCH, H( JCH, JCH+1 ), LDH,
- $ H( JCH+1, JCH+1 ), LDH, C, S )
- CALL ZROT( ILASTM-JCH, T( JCH, JCH+1 ), LDT,
- $ T( JCH+1, JCH+1 ), LDT, C, S )
- IF( ILQ )
- $ CALL ZROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
- $ C, DCONJG( S ) )
- IF( ILAZR2 )
- $ H( JCH, JCH-1 ) = H( JCH, JCH-1 )*C
- ILAZR2 = .FALSE.
- IF( ABS1( T( JCH+1, JCH+1 ) ).GE.BTOL ) THEN
- IF( JCH+1.GE.ILAST ) THEN
- GO TO 60
- ELSE
- IFIRST = JCH + 1
- GO TO 70
- END IF
- END IF
- T( JCH+1, JCH+1 ) = CZERO
- 20 CONTINUE
- GO TO 50
- ELSE
-*
-* Only test 2 passed -- chase the zero to T(ILAST,ILAST)
-* Then process as in the case T(ILAST,ILAST)=0
-*
- DO 30 JCH = J, ILAST - 1
- CTEMP = T( JCH, JCH+1 )
- CALL ZLARTG( CTEMP, T( JCH+1, JCH+1 ), C, S,
- $ T( JCH, JCH+1 ) )
- T( JCH+1, JCH+1 ) = CZERO
- IF( JCH.LT.ILASTM-1 )
- $ CALL ZROT( ILASTM-JCH-1, T( JCH, JCH+2 ), LDT,
- $ T( JCH+1, JCH+2 ), LDT, C, S )
- CALL ZROT( ILASTM-JCH+2, H( JCH, JCH-1 ), LDH,
- $ H( JCH+1, JCH-1 ), LDH, C, S )
- IF( ILQ )
- $ CALL ZROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
- $ C, DCONJG( S ) )
- CTEMP = H( JCH+1, JCH )
- CALL ZLARTG( CTEMP, H( JCH+1, JCH-1 ), C, S,
- $ H( JCH+1, JCH ) )
- H( JCH+1, JCH-1 ) = CZERO
- CALL ZROT( JCH+1-IFRSTM, H( IFRSTM, JCH ), 1,
- $ H( IFRSTM, JCH-1 ), 1, C, S )
- CALL ZROT( JCH-IFRSTM, T( IFRSTM, JCH ), 1,
- $ T( IFRSTM, JCH-1 ), 1, C, S )
- IF( ILZ )
- $ CALL ZROT( N, Z( 1, JCH ), 1, Z( 1, JCH-1 ), 1,
- $ C, S )
- 30 CONTINUE
- GO TO 50
- END IF
- ELSE IF( ILAZRO ) THEN
-*
-* Only test 1 passed -- work on J:ILAST
-*
- IFIRST = J
- GO TO 70
- END IF
-*
-* Neither test passed -- try next J
-*
- 40 CONTINUE
-*
-* (Drop-through is "impossible")
-*
- INFO = 2*N + 1
- GO TO 210
-*
-* T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a
-* 1x1 block.
-*
- 50 CONTINUE
- CTEMP = H( ILAST, ILAST )
- CALL ZLARTG( CTEMP, H( ILAST, ILAST-1 ), C, S,
- $ H( ILAST, ILAST ) )
- H( ILAST, ILAST-1 ) = CZERO
- CALL ZROT( ILAST-IFRSTM, H( IFRSTM, ILAST ), 1,
- $ H( IFRSTM, ILAST-1 ), 1, C, S )
- CALL ZROT( ILAST-IFRSTM, T( IFRSTM, ILAST ), 1,
- $ T( IFRSTM, ILAST-1 ), 1, C, S )
- IF( ILZ )
- $ CALL ZROT( N, Z( 1, ILAST ), 1, Z( 1, ILAST-1 ), 1, C, S )
-*
-* H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHA and BETA
-*
- 60 CONTINUE
- ABSB = ABS( T( ILAST, ILAST ) )
- IF( ABSB.GT.SAFMIN ) THEN
- SIGNBC = DCONJG( T( ILAST, ILAST ) / ABSB )
- T( ILAST, ILAST ) = ABSB
- IF( ILSCHR ) THEN
- CALL ZSCAL( ILAST-IFRSTM, SIGNBC, T( IFRSTM, ILAST ), 1 )
- CALL ZSCAL( ILAST+1-IFRSTM, SIGNBC, H( IFRSTM, ILAST ),
- $ 1 )
- ELSE
- H( ILAST, ILAST ) = H( ILAST, ILAST )*SIGNBC
- END IF
- IF( ILZ )
- $ CALL ZSCAL( N, SIGNBC, Z( 1, ILAST ), 1 )
- ELSE
- T( ILAST, ILAST ) = CZERO
- END IF
- ALPHA( ILAST ) = H( ILAST, ILAST )
- BETA( ILAST ) = T( ILAST, ILAST )
-*
-* Go to next block -- exit if finished.
-*
- ILAST = ILAST - 1
- IF( ILAST.LT.ILO )
- $ GO TO 190
-*
-* Reset counters
-*
- IITER = 0
- ESHIFT = CZERO
- IF( .NOT.ILSCHR ) THEN
- ILASTM = ILAST
- IF( IFRSTM.GT.ILAST )
- $ IFRSTM = ILO
- END IF
- GO TO 160
-*
-* QZ step
-*
-* This iteration only involves rows/columns IFIRST:ILAST. We
-* assume IFIRST < ILAST, and that the diagonal of B is non-zero.
-*
- 70 CONTINUE
- IITER = IITER + 1
- IF( .NOT.ILSCHR ) THEN
- IFRSTM = IFIRST
- END IF
-*
-* Compute the Shift.
-*
-* At this point, IFIRST < ILAST, and the diagonal elements of
-* T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in
-* magnitude)
-*
- IF( ( IITER / 10 )*10.NE.IITER ) THEN
-*
-* The Wilkinson shift (AEP p.512), i.e., the eigenvalue of
-* the bottom-right 2x2 block of A inv(B) which is nearest to
-* the bottom-right element.
-*
-* We factor B as U*D, where U has unit diagonals, and
-* compute (A*inv(D))*inv(U).
-*
- U12 = ( BSCALE*T( ILAST-1, ILAST ) ) /
- $ ( BSCALE*T( ILAST, ILAST ) )
- AD11 = ( ASCALE*H( ILAST-1, ILAST-1 ) ) /
- $ ( BSCALE*T( ILAST-1, ILAST-1 ) )
- AD21 = ( ASCALE*H( ILAST, ILAST-1 ) ) /
- $ ( BSCALE*T( ILAST-1, ILAST-1 ) )
- AD12 = ( ASCALE*H( ILAST-1, ILAST ) ) /
- $ ( BSCALE*T( ILAST, ILAST ) )
- AD22 = ( ASCALE*H( ILAST, ILAST ) ) /
- $ ( BSCALE*T( ILAST, ILAST ) )
- ABI22 = AD22 - U12*AD21
-*
- T1 = HALF*( AD11+ABI22 )
- RTDISC = SQRT( T1**2+AD12*AD21-AD11*AD22 )
- TEMP = DBLE( T1-ABI22 )*DBLE( RTDISC ) +
- $ DIMAG( T1-ABI22 )*DIMAG( RTDISC )
- IF( TEMP.LE.ZERO ) THEN
- SHIFT = T1 + RTDISC
- ELSE
- SHIFT = T1 - RTDISC
- END IF
- ELSE
-*
-* Exceptional shift. Chosen for no particularly good reason.
-*
- ESHIFT = ESHIFT + DCONJG( ( ASCALE*H( ILAST-1, ILAST ) ) /
- $ ( BSCALE*T( ILAST-1, ILAST-1 ) ) )
- SHIFT = ESHIFT
- END IF
-*
-* Now check for two consecutive small subdiagonals.
-*
- DO 80 J = ILAST - 1, IFIRST + 1, -1
- ISTART = J
- CTEMP = ASCALE*H( J, J ) - SHIFT*( BSCALE*T( J, J ) )
- TEMP = ABS1( CTEMP )
- TEMP2 = ASCALE*ABS1( H( J+1, J ) )
- TEMPR = MAX( TEMP, TEMP2 )
- IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
- TEMP = TEMP / TEMPR
- TEMP2 = TEMP2 / TEMPR
- END IF
- IF( ABS1( H( J, J-1 ) )*TEMP2.LE.TEMP*ATOL )
- $ GO TO 90
- 80 CONTINUE
-*
- ISTART = IFIRST
- CTEMP = ASCALE*H( IFIRST, IFIRST ) -
- $ SHIFT*( BSCALE*T( IFIRST, IFIRST ) )
- 90 CONTINUE
-*
-* Do an implicit-shift QZ sweep.
-*
-* Initial Q
-*
- CTEMP2 = ASCALE*H( ISTART+1, ISTART )
- CALL ZLARTG( CTEMP, CTEMP2, C, S, CTEMP3 )
-*
-* Sweep
-*
- DO 150 J = ISTART, ILAST - 1
- IF( J.GT.ISTART ) THEN
- CTEMP = H( J, J-1 )
- CALL ZLARTG( CTEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
- H( J+1, J-1 ) = CZERO
- END IF
-*
- DO 100 JC = J, ILASTM
- CTEMP = C*H( J, JC ) + S*H( J+1, JC )
- H( J+1, JC ) = -DCONJG( S )*H( J, JC ) + C*H( J+1, JC )
- H( J, JC ) = CTEMP
- CTEMP2 = C*T( J, JC ) + S*T( J+1, JC )
- T( J+1, JC ) = -DCONJG( S )*T( J, JC ) + C*T( J+1, JC )
- T( J, JC ) = CTEMP2
- 100 CONTINUE
- IF( ILQ ) THEN
- DO 110 JR = 1, N
- CTEMP = C*Q( JR, J ) + DCONJG( S )*Q( JR, J+1 )
- Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
- Q( JR, J ) = CTEMP
- 110 CONTINUE
- END IF
-*
- CTEMP = T( J+1, J+1 )
- CALL ZLARTG( CTEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
- T( J+1, J ) = CZERO
-*
- DO 120 JR = IFRSTM, MIN( J+2, ILAST )
- CTEMP = C*H( JR, J+1 ) + S*H( JR, J )
- H( JR, J ) = -DCONJG( S )*H( JR, J+1 ) + C*H( JR, J )
- H( JR, J+1 ) = CTEMP
- 120 CONTINUE
- DO 130 JR = IFRSTM, J
- CTEMP = C*T( JR, J+1 ) + S*T( JR, J )
- T( JR, J ) = -DCONJG( S )*T( JR, J+1 ) + C*T( JR, J )
- T( JR, J+1 ) = CTEMP
- 130 CONTINUE
- IF( ILZ ) THEN
- DO 140 JR = 1, N
- CTEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
- Z( JR, J ) = -DCONJG( S )*Z( JR, J+1 ) + C*Z( JR, J )
- Z( JR, J+1 ) = CTEMP
- 140 CONTINUE
- END IF
- 150 CONTINUE
-*
- 160 CONTINUE
-*
- 170 CONTINUE
-*
-* Drop-through = non-convergence
-*
- 180 CONTINUE
- INFO = ILAST
- GO TO 210
-*
-* Successful completion of all QZ steps
-*
- 190 CONTINUE
-*
-* Set Eigenvalues 1:ILO-1
-*
- DO 200 J = 1, ILO - 1
- ABSB = ABS( T( J, J ) )
- IF( ABSB.GT.SAFMIN ) THEN
- SIGNBC = DCONJG( T( J, J ) / ABSB )
- T( J, J ) = ABSB
- IF( ILSCHR ) THEN
- CALL ZSCAL( J-1, SIGNBC, T( 1, J ), 1 )
- CALL ZSCAL( J, SIGNBC, H( 1, J ), 1 )
- ELSE
- H( J, J ) = H( J, J )*SIGNBC
- END IF
- IF( ILZ )
- $ CALL ZSCAL( N, SIGNBC, Z( 1, J ), 1 )
- ELSE
- T( J, J ) = CZERO
- END IF
- ALPHA( J ) = H( J, J )
- BETA( J ) = T( J, J )
- 200 CONTINUE
-*
-* Normal Termination
-*
- INFO = 0
-*
-* Exit (other than argument error) -- return optimal workspace size
-*
- 210 CONTINUE
- WORK( 1 ) = DCMPLX( N )
- RETURN
-*
-* End of ZHGEQZ
-*
- END