summaryrefslogtreecommitdiff
path: root/src/lib/lapack/zgebd2.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/lapack/zgebd2.f')
-rw-r--r--src/lib/lapack/zgebd2.f250
1 files changed, 0 insertions, 250 deletions
diff --git a/src/lib/lapack/zgebd2.f b/src/lib/lapack/zgebd2.f
deleted file mode 100644
index 5ba52e87..00000000
--- a/src/lib/lapack/zgebd2.f
+++ /dev/null
@@ -1,250 +0,0 @@
- SUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
-*
-* -- LAPACK routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION D( * ), E( * )
- COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
-* ..
-*
-* Purpose
-* =======
-*
-* ZGEBD2 reduces a complex general m by n matrix A to upper or lower
-* real bidiagonal form B by a unitary transformation: Q' * A * P = B.
-*
-* If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
-*
-* Arguments
-* =========
-*
-* M (input) INTEGER
-* The number of rows in the matrix A. M >= 0.
-*
-* N (input) INTEGER
-* The number of columns in the matrix A. N >= 0.
-*
-* A (input/output) COMPLEX*16 array, dimension (LDA,N)
-* On entry, the m by n general matrix to be reduced.
-* On exit,
-* if m >= n, the diagonal and the first superdiagonal are
-* overwritten with the upper bidiagonal matrix B; the
-* elements below the diagonal, with the array TAUQ, represent
-* the unitary matrix Q as a product of elementary
-* reflectors, and the elements above the first superdiagonal,
-* with the array TAUP, represent the unitary matrix P as
-* a product of elementary reflectors;
-* if m < n, the diagonal and the first subdiagonal are
-* overwritten with the lower bidiagonal matrix B; the
-* elements below the first subdiagonal, with the array TAUQ,
-* represent the unitary matrix Q as a product of
-* elementary reflectors, and the elements above the diagonal,
-* with the array TAUP, represent the unitary matrix P as
-* a product of elementary reflectors.
-* See Further Details.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,M).
-*
-* D (output) DOUBLE PRECISION array, dimension (min(M,N))
-* The diagonal elements of the bidiagonal matrix B:
-* D(i) = A(i,i).
-*
-* E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
-* The off-diagonal elements of the bidiagonal matrix B:
-* if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
-* if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
-*
-* TAUQ (output) COMPLEX*16 array dimension (min(M,N))
-* The scalar factors of the elementary reflectors which
-* represent the unitary matrix Q. See Further Details.
-*
-* TAUP (output) COMPLEX*16 array, dimension (min(M,N))
-* The scalar factors of the elementary reflectors which
-* represent the unitary matrix P. See Further Details.
-*
-* WORK (workspace) COMPLEX*16 array, dimension (max(M,N))
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value.
-*
-* Further Details
-* ===============
-*
-* The matrices Q and P are represented as products of elementary
-* reflectors:
-*
-* If m >= n,
-*
-* Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
-*
-* Each H(i) and G(i) has the form:
-*
-* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
-*
-* where tauq and taup are complex scalars, and v and u are complex
-* vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
-* A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
-* A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
-*
-* If m < n,
-*
-* Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
-*
-* Each H(i) and G(i) has the form:
-*
-* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
-*
-* where tauq and taup are complex scalars, v and u are complex vectors;
-* v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
-* u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
-* tauq is stored in TAUQ(i) and taup in TAUP(i).
-*
-* The contents of A on exit are illustrated by the following examples:
-*
-* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
-*
-* ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
-* ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
-* ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
-* ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
-* ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
-* ( v1 v2 v3 v4 v5 )
-*
-* where d and e denote diagonal and off-diagonal elements of B, vi
-* denotes an element of the vector defining H(i), and ui an element of
-* the vector defining G(i).
-*
-* =====================================================================
-*
-* .. Parameters ..
- COMPLEX*16 ZERO, ONE
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
- $ ONE = ( 1.0D+0, 0.0D+0 ) )
-* ..
-* .. Local Scalars ..
- INTEGER I
- COMPLEX*16 ALPHA
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA, ZLACGV, ZLARF, ZLARFG
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC DCONJG, MAX, MIN
-* ..
-* .. Executable Statements ..
-*
-* Test the input parameters
-*
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- IF( INFO.LT.0 ) THEN
- CALL XERBLA( 'ZGEBD2', -INFO )
- RETURN
- END IF
-*
- IF( M.GE.N ) THEN
-*
-* Reduce to upper bidiagonal form
-*
- DO 10 I = 1, N
-*
-* Generate elementary reflector H(i) to annihilate A(i+1:m,i)
-*
- ALPHA = A( I, I )
- CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
- $ TAUQ( I ) )
- D( I ) = ALPHA
- A( I, I ) = ONE
-*
-* Apply H(i)' to A(i:m,i+1:n) from the left
-*
- IF( I.LT.N )
- $ CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
- $ DCONJG( TAUQ( I ) ), A( I, I+1 ), LDA, WORK )
- A( I, I ) = D( I )
-*
- IF( I.LT.N ) THEN
-*
-* Generate elementary reflector G(i) to annihilate
-* A(i,i+2:n)
-*
- CALL ZLACGV( N-I, A( I, I+1 ), LDA )
- ALPHA = A( I, I+1 )
- CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
- $ TAUP( I ) )
- E( I ) = ALPHA
- A( I, I+1 ) = ONE
-*
-* Apply G(i) to A(i+1:m,i+1:n) from the right
-*
- CALL ZLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
- $ TAUP( I ), A( I+1, I+1 ), LDA, WORK )
- CALL ZLACGV( N-I, A( I, I+1 ), LDA )
- A( I, I+1 ) = E( I )
- ELSE
- TAUP( I ) = ZERO
- END IF
- 10 CONTINUE
- ELSE
-*
-* Reduce to lower bidiagonal form
-*
- DO 20 I = 1, M
-*
-* Generate elementary reflector G(i) to annihilate A(i,i+1:n)
-*
- CALL ZLACGV( N-I+1, A( I, I ), LDA )
- ALPHA = A( I, I )
- CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
- $ TAUP( I ) )
- D( I ) = ALPHA
- A( I, I ) = ONE
-*
-* Apply G(i) to A(i+1:m,i:n) from the right
-*
- IF( I.LT.M )
- $ CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
- $ TAUP( I ), A( I+1, I ), LDA, WORK )
- CALL ZLACGV( N-I+1, A( I, I ), LDA )
- A( I, I ) = D( I )
-*
- IF( I.LT.M ) THEN
-*
-* Generate elementary reflector H(i) to annihilate
-* A(i+2:m,i)
-*
- ALPHA = A( I+1, I )
- CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
- $ TAUQ( I ) )
- E( I ) = ALPHA
- A( I+1, I ) = ONE
-*
-* Apply H(i)' to A(i+1:m,i+1:n) from the left
-*
- CALL ZLARF( 'Left', M-I, N-I, A( I+1, I ), 1,
- $ DCONJG( TAUQ( I ) ), A( I+1, I+1 ), LDA,
- $ WORK )
- A( I+1, I ) = E( I )
- ELSE
- TAUQ( I ) = ZERO
- END IF
- 20 CONTINUE
- END IF
- RETURN
-*
-* End of ZGEBD2
-*
- END