summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dlabrd.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/lapack/dlabrd.f')
-rw-r--r--src/lib/lapack/dlabrd.f290
1 files changed, 0 insertions, 290 deletions
diff --git a/src/lib/lapack/dlabrd.f b/src/lib/lapack/dlabrd.f
deleted file mode 100644
index 196b130c..00000000
--- a/src/lib/lapack/dlabrd.f
+++ /dev/null
@@ -1,290 +0,0 @@
- SUBROUTINE DLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
- $ LDY )
-*
-* -- LAPACK auxiliary routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- INTEGER LDA, LDX, LDY, M, N, NB
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAUP( * ),
- $ TAUQ( * ), X( LDX, * ), Y( LDY, * )
-* ..
-*
-* Purpose
-* =======
-*
-* DLABRD reduces the first NB rows and columns of a real general
-* m by n matrix A to upper or lower bidiagonal form by an orthogonal
-* transformation Q' * A * P, and returns the matrices X and Y which
-* are needed to apply the transformation to the unreduced part of A.
-*
-* If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
-* bidiagonal form.
-*
-* This is an auxiliary routine called by DGEBRD
-*
-* Arguments
-* =========
-*
-* M (input) INTEGER
-* The number of rows in the matrix A.
-*
-* N (input) INTEGER
-* The number of columns in the matrix A.
-*
-* NB (input) INTEGER
-* The number of leading rows and columns of A to be reduced.
-*
-* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
-* On entry, the m by n general matrix to be reduced.
-* On exit, the first NB rows and columns of the matrix are
-* overwritten; the rest of the array is unchanged.
-* If m >= n, elements on and below the diagonal in the first NB
-* columns, with the array TAUQ, represent the orthogonal
-* matrix Q as a product of elementary reflectors; and
-* elements above the diagonal in the first NB rows, with the
-* array TAUP, represent the orthogonal matrix P as a product
-* of elementary reflectors.
-* If m < n, elements below the diagonal in the first NB
-* columns, with the array TAUQ, represent the orthogonal
-* matrix Q as a product of elementary reflectors, and
-* elements on and above the diagonal in the first NB rows,
-* with the array TAUP, represent the orthogonal matrix P as
-* a product of elementary reflectors.
-* See Further Details.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,M).
-*
-* D (output) DOUBLE PRECISION array, dimension (NB)
-* The diagonal elements of the first NB rows and columns of
-* the reduced matrix. D(i) = A(i,i).
-*
-* E (output) DOUBLE PRECISION array, dimension (NB)
-* The off-diagonal elements of the first NB rows and columns of
-* the reduced matrix.
-*
-* TAUQ (output) DOUBLE PRECISION array dimension (NB)
-* The scalar factors of the elementary reflectors which
-* represent the orthogonal matrix Q. See Further Details.
-*
-* TAUP (output) DOUBLE PRECISION array, dimension (NB)
-* The scalar factors of the elementary reflectors which
-* represent the orthogonal matrix P. See Further Details.
-*
-* X (output) DOUBLE PRECISION array, dimension (LDX,NB)
-* The m-by-nb matrix X required to update the unreduced part
-* of A.
-*
-* LDX (input) INTEGER
-* The leading dimension of the array X. LDX >= M.
-*
-* Y (output) DOUBLE PRECISION array, dimension (LDY,NB)
-* The n-by-nb matrix Y required to update the unreduced part
-* of A.
-*
-* LDY (input) INTEGER
-* The leading dimension of the array Y. LDY >= N.
-*
-* Further Details
-* ===============
-*
-* The matrices Q and P are represented as products of elementary
-* reflectors:
-*
-* Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)
-*
-* Each H(i) and G(i) has the form:
-*
-* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
-*
-* where tauq and taup are real scalars, and v and u are real vectors.
-*
-* If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
-* A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
-* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
-*
-* If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
-* A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
-* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
-*
-* The elements of the vectors v and u together form the m-by-nb matrix
-* V and the nb-by-n matrix U' which are needed, with X and Y, to apply
-* the transformation to the unreduced part of the matrix, using a block
-* update of the form: A := A - V*Y' - X*U'.
-*
-* The contents of A on exit are illustrated by the following examples
-* with nb = 2:
-*
-* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
-*
-* ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )
-* ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )
-* ( v1 v2 a a a ) ( v1 1 a a a a )
-* ( v1 v2 a a a ) ( v1 v2 a a a a )
-* ( v1 v2 a a a ) ( v1 v2 a a a a )
-* ( v1 v2 a a a )
-*
-* where a denotes an element of the original matrix which is unchanged,
-* vi denotes an element of the vector defining H(i), and ui an element
-* of the vector defining G(i).
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
-* ..
-* .. Local Scalars ..
- INTEGER I
-* ..
-* .. External Subroutines ..
- EXTERNAL DGEMV, DLARFG, DSCAL
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MIN
-* ..
-* .. Executable Statements ..
-*
-* Quick return if possible
-*
- IF( M.LE.0 .OR. N.LE.0 )
- $ RETURN
-*
- IF( M.GE.N ) THEN
-*
-* Reduce to upper bidiagonal form
-*
- DO 10 I = 1, NB
-*
-* Update A(i:m,i)
-*
- CALL DGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
- $ LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
- CALL DGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
- $ LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
-*
-* Generate reflection Q(i) to annihilate A(i+1:m,i)
-*
- CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
- $ TAUQ( I ) )
- D( I ) = A( I, I )
- IF( I.LT.N ) THEN
- A( I, I ) = ONE
-*
-* Compute Y(i+1:n,i)
-*
- CALL DGEMV( 'Transpose', M-I+1, N-I, ONE, A( I, I+1 ),
- $ LDA, A( I, I ), 1, ZERO, Y( I+1, I ), 1 )
- CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, A( I, 1 ), LDA,
- $ A( I, I ), 1, ZERO, Y( 1, I ), 1 )
- CALL DGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
- $ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
- CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, X( I, 1 ), LDX,
- $ A( I, I ), 1, ZERO, Y( 1, I ), 1 )
- CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
- $ LDA, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
- CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
-*
-* Update A(i,i+1:n)
-*
- CALL DGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
- $ LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
- CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
- $ LDA, X( I, 1 ), LDX, ONE, A( I, I+1 ), LDA )
-*
-* Generate reflection P(i) to annihilate A(i,i+2:n)
-*
- CALL DLARFG( N-I, A( I, I+1 ), A( I, MIN( I+2, N ) ),
- $ LDA, TAUP( I ) )
- E( I ) = A( I, I+1 )
- A( I, I+1 ) = ONE
-*
-* Compute X(i+1:m,i)
-*
- CALL DGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
- $ LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
- CALL DGEMV( 'Transpose', N-I, I, ONE, Y( I+1, 1 ), LDY,
- $ A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
- CALL DGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
- $ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
- CALL DGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
- $ LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
- CALL DGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
- $ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
- CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
- END IF
- 10 CONTINUE
- ELSE
-*
-* Reduce to lower bidiagonal form
-*
- DO 20 I = 1, NB
-*
-* Update A(i,i:n)
-*
- CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
- $ LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
- CALL DGEMV( 'Transpose', I-1, N-I+1, -ONE, A( 1, I ), LDA,
- $ X( I, 1 ), LDX, ONE, A( I, I ), LDA )
-*
-* Generate reflection P(i) to annihilate A(i,i+1:n)
-*
- CALL DLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA,
- $ TAUP( I ) )
- D( I ) = A( I, I )
- IF( I.LT.M ) THEN
- A( I, I ) = ONE
-*
-* Compute X(i+1:m,i)
-*
- CALL DGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
- $ LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
- CALL DGEMV( 'Transpose', N-I+1, I-1, ONE, Y( I, 1 ), LDY,
- $ A( I, I ), LDA, ZERO, X( 1, I ), 1 )
- CALL DGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
- $ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
- CALL DGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
- $ LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
- CALL DGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
- $ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
- CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
-*
-* Update A(i+1:m,i)
-*
- CALL DGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
- $ LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
- CALL DGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
- $ LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
-*
-* Generate reflection Q(i) to annihilate A(i+2:m,i)
-*
- CALL DLARFG( M-I, A( I+1, I ), A( MIN( I+2, M ), I ), 1,
- $ TAUQ( I ) )
- E( I ) = A( I+1, I )
- A( I+1, I ) = ONE
-*
-* Compute Y(i+1:n,i)
-*
- CALL DGEMV( 'Transpose', M-I, N-I, ONE, A( I+1, I+1 ),
- $ LDA, A( I+1, I ), 1, ZERO, Y( I+1, I ), 1 )
- CALL DGEMV( 'Transpose', M-I, I-1, ONE, A( I+1, 1 ), LDA,
- $ A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
- CALL DGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
- $ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
- CALL DGEMV( 'Transpose', M-I, I, ONE, X( I+1, 1 ), LDX,
- $ A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
- CALL DGEMV( 'Transpose', I, N-I, -ONE, A( 1, I+1 ), LDA,
- $ Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
- CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
- END IF
- 20 CONTINUE
- END IF
- RETURN
-*
-* End of DLABRD
-*
- END