summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dggev.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/lapack/dggev.f')
-rw-r--r--src/lib/lapack/dggev.f489
1 files changed, 0 insertions, 489 deletions
diff --git a/src/lib/lapack/dggev.f b/src/lib/lapack/dggev.f
deleted file mode 100644
index 4a204c33..00000000
--- a/src/lib/lapack/dggev.f
+++ /dev/null
@@ -1,489 +0,0 @@
- SUBROUTINE DGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
- $ BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
-*
-* -- LAPACK driver routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- CHARACTER JOBVL, JOBVR
- INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
- $ B( LDB, * ), BETA( * ), VL( LDVL, * ),
- $ VR( LDVR, * ), WORK( * )
-* ..
-*
-* Purpose
-* =======
-*
-* DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)
-* the generalized eigenvalues, and optionally, the left and/or right
-* generalized eigenvectors.
-*
-* A generalized eigenvalue for a pair of matrices (A,B) is a scalar
-* lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
-* singular. It is usually represented as the pair (alpha,beta), as
-* there is a reasonable interpretation for beta=0, and even for both
-* being zero.
-*
-* The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
-* of (A,B) satisfies
-*
-* A * v(j) = lambda(j) * B * v(j).
-*
-* The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
-* of (A,B) satisfies
-*
-* u(j)**H * A = lambda(j) * u(j)**H * B .
-*
-* where u(j)**H is the conjugate-transpose of u(j).
-*
-*
-* Arguments
-* =========
-*
-* JOBVL (input) CHARACTER*1
-* = 'N': do not compute the left generalized eigenvectors;
-* = 'V': compute the left generalized eigenvectors.
-*
-* JOBVR (input) CHARACTER*1
-* = 'N': do not compute the right generalized eigenvectors;
-* = 'V': compute the right generalized eigenvectors.
-*
-* N (input) INTEGER
-* The order of the matrices A, B, VL, and VR. N >= 0.
-*
-* A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
-* On entry, the matrix A in the pair (A,B).
-* On exit, A has been overwritten.
-*
-* LDA (input) INTEGER
-* The leading dimension of A. LDA >= max(1,N).
-*
-* B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
-* On entry, the matrix B in the pair (A,B).
-* On exit, B has been overwritten.
-*
-* LDB (input) INTEGER
-* The leading dimension of B. LDB >= max(1,N).
-*
-* ALPHAR (output) DOUBLE PRECISION array, dimension (N)
-* ALPHAI (output) DOUBLE PRECISION array, dimension (N)
-* BETA (output) DOUBLE PRECISION array, dimension (N)
-* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
-* be the generalized eigenvalues. If ALPHAI(j) is zero, then
-* the j-th eigenvalue is real; if positive, then the j-th and
-* (j+1)-st eigenvalues are a complex conjugate pair, with
-* ALPHAI(j+1) negative.
-*
-* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
-* may easily over- or underflow, and BETA(j) may even be zero.
-* Thus, the user should avoid naively computing the ratio
-* alpha/beta. However, ALPHAR and ALPHAI will be always less
-* than and usually comparable with norm(A) in magnitude, and
-* BETA always less than and usually comparable with norm(B).
-*
-* VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
-* If JOBVL = 'V', the left eigenvectors u(j) are stored one
-* after another in the columns of VL, in the same order as
-* their eigenvalues. If the j-th eigenvalue is real, then
-* u(j) = VL(:,j), the j-th column of VL. If the j-th and
-* (j+1)-th eigenvalues form a complex conjugate pair, then
-* u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
-* Each eigenvector is scaled so the largest component has
-* abs(real part)+abs(imag. part)=1.
-* Not referenced if JOBVL = 'N'.
-*
-* LDVL (input) INTEGER
-* The leading dimension of the matrix VL. LDVL >= 1, and
-* if JOBVL = 'V', LDVL >= N.
-*
-* VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
-* If JOBVR = 'V', the right eigenvectors v(j) are stored one
-* after another in the columns of VR, in the same order as
-* their eigenvalues. If the j-th eigenvalue is real, then
-* v(j) = VR(:,j), the j-th column of VR. If the j-th and
-* (j+1)-th eigenvalues form a complex conjugate pair, then
-* v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
-* Each eigenvector is scaled so the largest component has
-* abs(real part)+abs(imag. part)=1.
-* Not referenced if JOBVR = 'N'.
-*
-* LDVR (input) INTEGER
-* The leading dimension of the matrix VR. LDVR >= 1, and
-* if JOBVR = 'V', LDVR >= N.
-*
-* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK. LWORK >= max(1,8*N).
-* For good performance, LWORK must generally be larger.
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value.
-* = 1,...,N:
-* The QZ iteration failed. No eigenvectors have been
-* calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
-* should be correct for j=INFO+1,...,N.
-* > N: =N+1: other than QZ iteration failed in DHGEQZ.
-* =N+2: error return from DTGEVC.
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
-* ..
-* .. Local Scalars ..
- LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
- CHARACTER CHTEMP
- INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
- $ IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, MAXWRK,
- $ MINWRK
- DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
- $ SMLNUM, TEMP
-* ..
-* .. Local Arrays ..
- LOGICAL LDUMMA( 1 )
-* ..
-* .. External Subroutines ..
- EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
- $ DLACPY,DLASCL, DLASET, DORGQR, DORMQR, DTGEVC,
- $ XERBLA
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- DOUBLE PRECISION DLAMCH, DLANGE
- EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, SQRT
-* ..
-* .. Executable Statements ..
-*
-* Decode the input arguments
-*
- IF( LSAME( JOBVL, 'N' ) ) THEN
- IJOBVL = 1
- ILVL = .FALSE.
- ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
- IJOBVL = 2
- ILVL = .TRUE.
- ELSE
- IJOBVL = -1
- ILVL = .FALSE.
- END IF
-*
- IF( LSAME( JOBVR, 'N' ) ) THEN
- IJOBVR = 1
- ILVR = .FALSE.
- ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
- IJOBVR = 2
- ILVR = .TRUE.
- ELSE
- IJOBVR = -1
- ILVR = .FALSE.
- END IF
- ILV = ILVL .OR. ILVR
-*
-* Test the input arguments
-*
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- IF( IJOBVL.LE.0 ) THEN
- INFO = -1
- ELSE IF( IJOBVR.LE.0 ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -7
- ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
- INFO = -12
- ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
- INFO = -14
- END IF
-*
-* Compute workspace
-* (Note: Comments in the code beginning "Workspace:" describe the
-* minimal amount of workspace needed at that point in the code,
-* as well as the preferred amount for good performance.
-* NB refers to the optimal block size for the immediately
-* following subroutine, as returned by ILAENV. The workspace is
-* computed assuming ILO = 1 and IHI = N, the worst case.)
-*
- IF( INFO.EQ.0 ) THEN
- MINWRK = MAX( 1, 8*N )
- MAXWRK = MAX( 1, N*( 7 +
- $ ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 ) ) )
- MAXWRK = MAX( MAXWRK, N*( 7 +
- $ ILAENV( 1, 'DORMQR', ' ', N, 1, N, 0 ) ) )
- IF( ILVL ) THEN
- MAXWRK = MAX( MAXWRK, N*( 7 +
- $ ILAENV( 1, 'DORGQR', ' ', N, 1, N, -1 ) ) )
- END IF
- WORK( 1 ) = MAXWRK
-*
- IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
- $ INFO = -16
- END IF
-*
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGGEV ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
-*
-* Quick return if possible
-*
- IF( N.EQ.0 )
- $ RETURN
-*
-* Get machine constants
-*
- EPS = DLAMCH( 'P' )
- SMLNUM = DLAMCH( 'S' )
- BIGNUM = ONE / SMLNUM
- CALL DLABAD( SMLNUM, BIGNUM )
- SMLNUM = SQRT( SMLNUM ) / EPS
- BIGNUM = ONE / SMLNUM
-*
-* Scale A if max element outside range [SMLNUM,BIGNUM]
-*
- ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
- ILASCL = .FALSE.
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- ANRMTO = SMLNUM
- ILASCL = .TRUE.
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- ANRMTO = BIGNUM
- ILASCL = .TRUE.
- END IF
- IF( ILASCL )
- $ CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
-*
-* Scale B if max element outside range [SMLNUM,BIGNUM]
-*
- BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
- ILBSCL = .FALSE.
- IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
- BNRMTO = SMLNUM
- ILBSCL = .TRUE.
- ELSE IF( BNRM.GT.BIGNUM ) THEN
- BNRMTO = BIGNUM
- ILBSCL = .TRUE.
- END IF
- IF( ILBSCL )
- $ CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
-*
-* Permute the matrices A, B to isolate eigenvalues if possible
-* (Workspace: need 6*N)
-*
- ILEFT = 1
- IRIGHT = N + 1
- IWRK = IRIGHT + N
- CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
- $ WORK( IRIGHT ), WORK( IWRK ), IERR )
-*
-* Reduce B to triangular form (QR decomposition of B)
-* (Workspace: need N, prefer N*NB)
-*
- IROWS = IHI + 1 - ILO
- IF( ILV ) THEN
- ICOLS = N + 1 - ILO
- ELSE
- ICOLS = IROWS
- END IF
- ITAU = IWRK
- IWRK = ITAU + IROWS
- CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
- $ WORK( IWRK ), LWORK+1-IWRK, IERR )
-*
-* Apply the orthogonal transformation to matrix A
-* (Workspace: need N, prefer N*NB)
-*
- CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
- $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
- $ LWORK+1-IWRK, IERR )
-*
-* Initialize VL
-* (Workspace: need N, prefer N*NB)
-*
- IF( ILVL ) THEN
- CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
- IF( IROWS.GT.1 ) THEN
- CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
- $ VL( ILO+1, ILO ), LDVL )
- END IF
- CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
- $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
- END IF
-*
-* Initialize VR
-*
- IF( ILVR )
- $ CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
-*
-* Reduce to generalized Hessenberg form
-* (Workspace: none needed)
-*
- IF( ILV ) THEN
-*
-* Eigenvectors requested -- work on whole matrix.
-*
- CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
- $ LDVL, VR, LDVR, IERR )
- ELSE
- CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
- $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
- END IF
-*
-* Perform QZ algorithm (Compute eigenvalues, and optionally, the
-* Schur forms and Schur vectors)
-* (Workspace: need N)
-*
- IWRK = ITAU
- IF( ILV ) THEN
- CHTEMP = 'S'
- ELSE
- CHTEMP = 'E'
- END IF
- CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
- $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
- $ WORK( IWRK ), LWORK+1-IWRK, IERR )
- IF( IERR.NE.0 ) THEN
- IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
- INFO = IERR
- ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
- INFO = IERR - N
- ELSE
- INFO = N + 1
- END IF
- GO TO 110
- END IF
-*
-* Compute Eigenvectors
-* (Workspace: need 6*N)
-*
- IF( ILV ) THEN
- IF( ILVL ) THEN
- IF( ILVR ) THEN
- CHTEMP = 'B'
- ELSE
- CHTEMP = 'L'
- END IF
- ELSE
- CHTEMP = 'R'
- END IF
- CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
- $ VR, LDVR, N, IN, WORK( IWRK ), IERR )
- IF( IERR.NE.0 ) THEN
- INFO = N + 2
- GO TO 110
- END IF
-*
-* Undo balancing on VL and VR and normalization
-* (Workspace: none needed)
-*
- IF( ILVL ) THEN
- CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
- $ WORK( IRIGHT ), N, VL, LDVL, IERR )
- DO 50 JC = 1, N
- IF( ALPHAI( JC ).LT.ZERO )
- $ GO TO 50
- TEMP = ZERO
- IF( ALPHAI( JC ).EQ.ZERO ) THEN
- DO 10 JR = 1, N
- TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
- 10 CONTINUE
- ELSE
- DO 20 JR = 1, N
- TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
- $ ABS( VL( JR, JC+1 ) ) )
- 20 CONTINUE
- END IF
- IF( TEMP.LT.SMLNUM )
- $ GO TO 50
- TEMP = ONE / TEMP
- IF( ALPHAI( JC ).EQ.ZERO ) THEN
- DO 30 JR = 1, N
- VL( JR, JC ) = VL( JR, JC )*TEMP
- 30 CONTINUE
- ELSE
- DO 40 JR = 1, N
- VL( JR, JC ) = VL( JR, JC )*TEMP
- VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
- 40 CONTINUE
- END IF
- 50 CONTINUE
- END IF
- IF( ILVR ) THEN
- CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
- $ WORK( IRIGHT ), N, VR, LDVR, IERR )
- DO 100 JC = 1, N
- IF( ALPHAI( JC ).LT.ZERO )
- $ GO TO 100
- TEMP = ZERO
- IF( ALPHAI( JC ).EQ.ZERO ) THEN
- DO 60 JR = 1, N
- TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
- 60 CONTINUE
- ELSE
- DO 70 JR = 1, N
- TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
- $ ABS( VR( JR, JC+1 ) ) )
- 70 CONTINUE
- END IF
- IF( TEMP.LT.SMLNUM )
- $ GO TO 100
- TEMP = ONE / TEMP
- IF( ALPHAI( JC ).EQ.ZERO ) THEN
- DO 80 JR = 1, N
- VR( JR, JC ) = VR( JR, JC )*TEMP
- 80 CONTINUE
- ELSE
- DO 90 JR = 1, N
- VR( JR, JC ) = VR( JR, JC )*TEMP
- VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
- 90 CONTINUE
- END IF
- 100 CONTINUE
- END IF
-*
-* End of eigenvector calculation
-*
- END IF
-*
-* Undo scaling if necessary
-*
- IF( ILASCL ) THEN
- CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
- CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
- END IF
-*
- IF( ILBSCL ) THEN
- CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
- END IF
-*
- 110 CONTINUE
-*
- WORK( 1 ) = MAXWRK
-*
- RETURN
-*
-* End of DGGEV
-*
- END