diff options
Diffstat (limited to 'src/lib/lapack/dggev.f')
-rw-r--r-- | src/lib/lapack/dggev.f | 489 |
1 files changed, 0 insertions, 489 deletions
diff --git a/src/lib/lapack/dggev.f b/src/lib/lapack/dggev.f deleted file mode 100644 index 4a204c33..00000000 --- a/src/lib/lapack/dggev.f +++ /dev/null @@ -1,489 +0,0 @@ - SUBROUTINE DGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, - $ BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO ) -* -* -- LAPACK driver routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - CHARACTER JOBVL, JOBVR - INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N -* .. -* .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), - $ B( LDB, * ), BETA( * ), VL( LDVL, * ), - $ VR( LDVR, * ), WORK( * ) -* .. -* -* Purpose -* ======= -* -* DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B) -* the generalized eigenvalues, and optionally, the left and/or right -* generalized eigenvectors. -* -* A generalized eigenvalue for a pair of matrices (A,B) is a scalar -* lambda or a ratio alpha/beta = lambda, such that A - lambda*B is -* singular. It is usually represented as the pair (alpha,beta), as -* there is a reasonable interpretation for beta=0, and even for both -* being zero. -* -* The right eigenvector v(j) corresponding to the eigenvalue lambda(j) -* of (A,B) satisfies -* -* A * v(j) = lambda(j) * B * v(j). -* -* The left eigenvector u(j) corresponding to the eigenvalue lambda(j) -* of (A,B) satisfies -* -* u(j)**H * A = lambda(j) * u(j)**H * B . -* -* where u(j)**H is the conjugate-transpose of u(j). -* -* -* Arguments -* ========= -* -* JOBVL (input) CHARACTER*1 -* = 'N': do not compute the left generalized eigenvectors; -* = 'V': compute the left generalized eigenvectors. -* -* JOBVR (input) CHARACTER*1 -* = 'N': do not compute the right generalized eigenvectors; -* = 'V': compute the right generalized eigenvectors. -* -* N (input) INTEGER -* The order of the matrices A, B, VL, and VR. N >= 0. -* -* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) -* On entry, the matrix A in the pair (A,B). -* On exit, A has been overwritten. -* -* LDA (input) INTEGER -* The leading dimension of A. LDA >= max(1,N). -* -* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) -* On entry, the matrix B in the pair (A,B). -* On exit, B has been overwritten. -* -* LDB (input) INTEGER -* The leading dimension of B. LDB >= max(1,N). -* -* ALPHAR (output) DOUBLE PRECISION array, dimension (N) -* ALPHAI (output) DOUBLE PRECISION array, dimension (N) -* BETA (output) DOUBLE PRECISION array, dimension (N) -* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will -* be the generalized eigenvalues. If ALPHAI(j) is zero, then -* the j-th eigenvalue is real; if positive, then the j-th and -* (j+1)-st eigenvalues are a complex conjugate pair, with -* ALPHAI(j+1) negative. -* -* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) -* may easily over- or underflow, and BETA(j) may even be zero. -* Thus, the user should avoid naively computing the ratio -* alpha/beta. However, ALPHAR and ALPHAI will be always less -* than and usually comparable with norm(A) in magnitude, and -* BETA always less than and usually comparable with norm(B). -* -* VL (output) DOUBLE PRECISION array, dimension (LDVL,N) -* If JOBVL = 'V', the left eigenvectors u(j) are stored one -* after another in the columns of VL, in the same order as -* their eigenvalues. If the j-th eigenvalue is real, then -* u(j) = VL(:,j), the j-th column of VL. If the j-th and -* (j+1)-th eigenvalues form a complex conjugate pair, then -* u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). -* Each eigenvector is scaled so the largest component has -* abs(real part)+abs(imag. part)=1. -* Not referenced if JOBVL = 'N'. -* -* LDVL (input) INTEGER -* The leading dimension of the matrix VL. LDVL >= 1, and -* if JOBVL = 'V', LDVL >= N. -* -* VR (output) DOUBLE PRECISION array, dimension (LDVR,N) -* If JOBVR = 'V', the right eigenvectors v(j) are stored one -* after another in the columns of VR, in the same order as -* their eigenvalues. If the j-th eigenvalue is real, then -* v(j) = VR(:,j), the j-th column of VR. If the j-th and -* (j+1)-th eigenvalues form a complex conjugate pair, then -* v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). -* Each eigenvector is scaled so the largest component has -* abs(real part)+abs(imag. part)=1. -* Not referenced if JOBVR = 'N'. -* -* LDVR (input) INTEGER -* The leading dimension of the matrix VR. LDVR >= 1, and -* if JOBVR = 'V', LDVR >= N. -* -* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) -* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. LWORK >= max(1,8*N). -* For good performance, LWORK must generally be larger. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value. -* = 1,...,N: -* The QZ iteration failed. No eigenvectors have been -* calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) -* should be correct for j=INFO+1,...,N. -* > N: =N+1: other than QZ iteration failed in DHGEQZ. -* =N+2: error return from DTGEVC. -* -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) -* .. -* .. Local Scalars .. - LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY - CHARACTER CHTEMP - INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO, - $ IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, MAXWRK, - $ MINWRK - DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, - $ SMLNUM, TEMP -* .. -* .. Local Arrays .. - LOGICAL LDUMMA( 1 ) -* .. -* .. External Subroutines .. - EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD, - $ DLACPY,DLASCL, DLASET, DORGQR, DORMQR, DTGEVC, - $ XERBLA -* .. -* .. External Functions .. - LOGICAL LSAME - INTEGER ILAENV - DOUBLE PRECISION DLAMCH, DLANGE - EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE -* .. -* .. Intrinsic Functions .. - INTRINSIC ABS, MAX, SQRT -* .. -* .. Executable Statements .. -* -* Decode the input arguments -* - IF( LSAME( JOBVL, 'N' ) ) THEN - IJOBVL = 1 - ILVL = .FALSE. - ELSE IF( LSAME( JOBVL, 'V' ) ) THEN - IJOBVL = 2 - ILVL = .TRUE. - ELSE - IJOBVL = -1 - ILVL = .FALSE. - END IF -* - IF( LSAME( JOBVR, 'N' ) ) THEN - IJOBVR = 1 - ILVR = .FALSE. - ELSE IF( LSAME( JOBVR, 'V' ) ) THEN - IJOBVR = 2 - ILVR = .TRUE. - ELSE - IJOBVR = -1 - ILVR = .FALSE. - END IF - ILV = ILVL .OR. ILVR -* -* Test the input arguments -* - INFO = 0 - LQUERY = ( LWORK.EQ.-1 ) - IF( IJOBVL.LE.0 ) THEN - INFO = -1 - ELSE IF( IJOBVR.LE.0 ) THEN - INFO = -2 - ELSE IF( N.LT.0 ) THEN - INFO = -3 - ELSE IF( LDA.LT.MAX( 1, N ) ) THEN - INFO = -5 - ELSE IF( LDB.LT.MAX( 1, N ) ) THEN - INFO = -7 - ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN - INFO = -12 - ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN - INFO = -14 - END IF -* -* Compute workspace -* (Note: Comments in the code beginning "Workspace:" describe the -* minimal amount of workspace needed at that point in the code, -* as well as the preferred amount for good performance. -* NB refers to the optimal block size for the immediately -* following subroutine, as returned by ILAENV. The workspace is -* computed assuming ILO = 1 and IHI = N, the worst case.) -* - IF( INFO.EQ.0 ) THEN - MINWRK = MAX( 1, 8*N ) - MAXWRK = MAX( 1, N*( 7 + - $ ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 ) ) ) - MAXWRK = MAX( MAXWRK, N*( 7 + - $ ILAENV( 1, 'DORMQR', ' ', N, 1, N, 0 ) ) ) - IF( ILVL ) THEN - MAXWRK = MAX( MAXWRK, N*( 7 + - $ ILAENV( 1, 'DORGQR', ' ', N, 1, N, -1 ) ) ) - END IF - WORK( 1 ) = MAXWRK -* - IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) - $ INFO = -16 - END IF -* - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'DGGEV ', -INFO ) - RETURN - ELSE IF( LQUERY ) THEN - RETURN - END IF -* -* Quick return if possible -* - IF( N.EQ.0 ) - $ RETURN -* -* Get machine constants -* - EPS = DLAMCH( 'P' ) - SMLNUM = DLAMCH( 'S' ) - BIGNUM = ONE / SMLNUM - CALL DLABAD( SMLNUM, BIGNUM ) - SMLNUM = SQRT( SMLNUM ) / EPS - BIGNUM = ONE / SMLNUM -* -* Scale A if max element outside range [SMLNUM,BIGNUM] -* - ANRM = DLANGE( 'M', N, N, A, LDA, WORK ) - ILASCL = .FALSE. - IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN - ANRMTO = SMLNUM - ILASCL = .TRUE. - ELSE IF( ANRM.GT.BIGNUM ) THEN - ANRMTO = BIGNUM - ILASCL = .TRUE. - END IF - IF( ILASCL ) - $ CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR ) -* -* Scale B if max element outside range [SMLNUM,BIGNUM] -* - BNRM = DLANGE( 'M', N, N, B, LDB, WORK ) - ILBSCL = .FALSE. - IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN - BNRMTO = SMLNUM - ILBSCL = .TRUE. - ELSE IF( BNRM.GT.BIGNUM ) THEN - BNRMTO = BIGNUM - ILBSCL = .TRUE. - END IF - IF( ILBSCL ) - $ CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR ) -* -* Permute the matrices A, B to isolate eigenvalues if possible -* (Workspace: need 6*N) -* - ILEFT = 1 - IRIGHT = N + 1 - IWRK = IRIGHT + N - CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ), - $ WORK( IRIGHT ), WORK( IWRK ), IERR ) -* -* Reduce B to triangular form (QR decomposition of B) -* (Workspace: need N, prefer N*NB) -* - IROWS = IHI + 1 - ILO - IF( ILV ) THEN - ICOLS = N + 1 - ILO - ELSE - ICOLS = IROWS - END IF - ITAU = IWRK - IWRK = ITAU + IROWS - CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ), - $ WORK( IWRK ), LWORK+1-IWRK, IERR ) -* -* Apply the orthogonal transformation to matrix A -* (Workspace: need N, prefer N*NB) -* - CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB, - $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ), - $ LWORK+1-IWRK, IERR ) -* -* Initialize VL -* (Workspace: need N, prefer N*NB) -* - IF( ILVL ) THEN - CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL ) - IF( IROWS.GT.1 ) THEN - CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB, - $ VL( ILO+1, ILO ), LDVL ) - END IF - CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL, - $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR ) - END IF -* -* Initialize VR -* - IF( ILVR ) - $ CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR ) -* -* Reduce to generalized Hessenberg form -* (Workspace: none needed) -* - IF( ILV ) THEN -* -* Eigenvectors requested -- work on whole matrix. -* - CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL, - $ LDVL, VR, LDVR, IERR ) - ELSE - CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA, - $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR ) - END IF -* -* Perform QZ algorithm (Compute eigenvalues, and optionally, the -* Schur forms and Schur vectors) -* (Workspace: need N) -* - IWRK = ITAU - IF( ILV ) THEN - CHTEMP = 'S' - ELSE - CHTEMP = 'E' - END IF - CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, - $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, - $ WORK( IWRK ), LWORK+1-IWRK, IERR ) - IF( IERR.NE.0 ) THEN - IF( IERR.GT.0 .AND. IERR.LE.N ) THEN - INFO = IERR - ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN - INFO = IERR - N - ELSE - INFO = N + 1 - END IF - GO TO 110 - END IF -* -* Compute Eigenvectors -* (Workspace: need 6*N) -* - IF( ILV ) THEN - IF( ILVL ) THEN - IF( ILVR ) THEN - CHTEMP = 'B' - ELSE - CHTEMP = 'L' - END IF - ELSE - CHTEMP = 'R' - END IF - CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL, - $ VR, LDVR, N, IN, WORK( IWRK ), IERR ) - IF( IERR.NE.0 ) THEN - INFO = N + 2 - GO TO 110 - END IF -* -* Undo balancing on VL and VR and normalization -* (Workspace: none needed) -* - IF( ILVL ) THEN - CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ), - $ WORK( IRIGHT ), N, VL, LDVL, IERR ) - DO 50 JC = 1, N - IF( ALPHAI( JC ).LT.ZERO ) - $ GO TO 50 - TEMP = ZERO - IF( ALPHAI( JC ).EQ.ZERO ) THEN - DO 10 JR = 1, N - TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) ) - 10 CONTINUE - ELSE - DO 20 JR = 1, N - TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+ - $ ABS( VL( JR, JC+1 ) ) ) - 20 CONTINUE - END IF - IF( TEMP.LT.SMLNUM ) - $ GO TO 50 - TEMP = ONE / TEMP - IF( ALPHAI( JC ).EQ.ZERO ) THEN - DO 30 JR = 1, N - VL( JR, JC ) = VL( JR, JC )*TEMP - 30 CONTINUE - ELSE - DO 40 JR = 1, N - VL( JR, JC ) = VL( JR, JC )*TEMP - VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP - 40 CONTINUE - END IF - 50 CONTINUE - END IF - IF( ILVR ) THEN - CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ), - $ WORK( IRIGHT ), N, VR, LDVR, IERR ) - DO 100 JC = 1, N - IF( ALPHAI( JC ).LT.ZERO ) - $ GO TO 100 - TEMP = ZERO - IF( ALPHAI( JC ).EQ.ZERO ) THEN - DO 60 JR = 1, N - TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) ) - 60 CONTINUE - ELSE - DO 70 JR = 1, N - TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+ - $ ABS( VR( JR, JC+1 ) ) ) - 70 CONTINUE - END IF - IF( TEMP.LT.SMLNUM ) - $ GO TO 100 - TEMP = ONE / TEMP - IF( ALPHAI( JC ).EQ.ZERO ) THEN - DO 80 JR = 1, N - VR( JR, JC ) = VR( JR, JC )*TEMP - 80 CONTINUE - ELSE - DO 90 JR = 1, N - VR( JR, JC ) = VR( JR, JC )*TEMP - VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP - 90 CONTINUE - END IF - 100 CONTINUE - END IF -* -* End of eigenvector calculation -* - END IF -* -* Undo scaling if necessary -* - IF( ILASCL ) THEN - CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR ) - CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR ) - END IF -* - IF( ILBSCL ) THEN - CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR ) - END IF -* - 110 CONTINUE -* - WORK( 1 ) = MAXWRK -* - RETURN -* -* End of DGGEV -* - END |