summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dgerq2.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/lapack/dgerq2.f')
-rw-r--r--src/lib/lapack/dgerq2.f122
1 files changed, 0 insertions, 122 deletions
diff --git a/src/lib/lapack/dgerq2.f b/src/lib/lapack/dgerq2.f
deleted file mode 100644
index 4dfe8b0f..00000000
--- a/src/lib/lapack/dgerq2.f
+++ /dev/null
@@ -1,122 +0,0 @@
- SUBROUTINE DGERQ2( M, N, A, LDA, TAU, WORK, INFO )
-*
-* -- LAPACK routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
-* ..
-*
-* Purpose
-* =======
-*
-* DGERQ2 computes an RQ factorization of a real m by n matrix A:
-* A = R * Q.
-*
-* Arguments
-* =========
-*
-* M (input) INTEGER
-* The number of rows of the matrix A. M >= 0.
-*
-* N (input) INTEGER
-* The number of columns of the matrix A. N >= 0.
-*
-* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
-* On entry, the m by n matrix A.
-* On exit, if m <= n, the upper triangle of the subarray
-* A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
-* if m >= n, the elements on and above the (m-n)-th subdiagonal
-* contain the m by n upper trapezoidal matrix R; the remaining
-* elements, with the array TAU, represent the orthogonal matrix
-* Q as a product of elementary reflectors (see Further
-* Details).
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,M).
-*
-* TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
-* The scalar factors of the elementary reflectors (see Further
-* Details).
-*
-* WORK (workspace) DOUBLE PRECISION array, dimension (M)
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-*
-* Further Details
-* ===============
-*
-* The matrix Q is represented as a product of elementary reflectors
-*
-* Q = H(1) H(2) . . . H(k), where k = min(m,n).
-*
-* Each H(i) has the form
-*
-* H(i) = I - tau * v * v'
-*
-* where tau is a real scalar, and v is a real vector with
-* v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
-* A(m-k+i,1:n-k+i-1), and tau in TAU(i).
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D+0 )
-* ..
-* .. Local Scalars ..
- INTEGER I, K
- DOUBLE PRECISION AII
-* ..
-* .. External Subroutines ..
- EXTERNAL DLARF, DLARFG, XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
-* ..
-* .. Executable Statements ..
-*
-* Test the input arguments
-*
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGERQ2', -INFO )
- RETURN
- END IF
-*
- K = MIN( M, N )
-*
- DO 10 I = K, 1, -1
-*
-* Generate elementary reflector H(i) to annihilate
-* A(m-k+i,1:n-k+i-1)
-*
- CALL DLARFG( N-K+I, A( M-K+I, N-K+I ), A( M-K+I, 1 ), LDA,
- $ TAU( I ) )
-*
-* Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
-*
- AII = A( M-K+I, N-K+I )
- A( M-K+I, N-K+I ) = ONE
- CALL DLARF( 'Right', M-K+I-1, N-K+I, A( M-K+I, 1 ), LDA,
- $ TAU( I ), A, LDA, WORK )
- A( M-K+I, N-K+I ) = AII
- 10 CONTINUE
- RETURN
-*
-* End of DGERQ2
-*
- END