diff options
Diffstat (limited to 'src/lib/blas/ztrsv.f')
-rw-r--r-- | src/lib/blas/ztrsv.f | 324 |
1 files changed, 0 insertions, 324 deletions
diff --git a/src/lib/blas/ztrsv.f b/src/lib/blas/ztrsv.f deleted file mode 100644 index d0a57c44..00000000 --- a/src/lib/blas/ztrsv.f +++ /dev/null @@ -1,324 +0,0 @@ - SUBROUTINE ZTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) -* .. Scalar Arguments .. - INTEGER INCX, LDA, N - CHARACTER*1 DIAG, TRANS, UPLO -* .. Array Arguments .. - COMPLEX*16 A( LDA, * ), X( * ) -* .. -* -* Purpose -* ======= -* -* ZTRSV solves one of the systems of equations -* -* A*x = b, or A'*x = b, or conjg( A' )*x = b, -* -* where b and x are n element vectors and A is an n by n unit, or -* non-unit, upper or lower triangular matrix. -* -* No test for singularity or near-singularity is included in this -* routine. Such tests must be performed before calling this routine. -* -* Parameters -* ========== -* -* UPLO - CHARACTER*1. -* On entry, UPLO specifies whether the matrix is an upper or -* lower triangular matrix as follows: -* -* UPLO = 'U' or 'u' A is an upper triangular matrix. -* -* UPLO = 'L' or 'l' A is a lower triangular matrix. -* -* Unchanged on exit. -* -* TRANS - CHARACTER*1. -* On entry, TRANS specifies the equations to be solved as -* follows: -* -* TRANS = 'N' or 'n' A*x = b. -* -* TRANS = 'T' or 't' A'*x = b. -* -* TRANS = 'C' or 'c' conjg( A' )*x = b. -* -* Unchanged on exit. -* -* DIAG - CHARACTER*1. -* On entry, DIAG specifies whether or not A is unit -* triangular as follows: -* -* DIAG = 'U' or 'u' A is assumed to be unit triangular. -* -* DIAG = 'N' or 'n' A is not assumed to be unit -* triangular. -* -* Unchanged on exit. -* -* N - INTEGER. -* On entry, N specifies the order of the matrix A. -* N must be at least zero. -* Unchanged on exit. -* -* A - COMPLEX*16 array of DIMENSION ( LDA, n ). -* Before entry with UPLO = 'U' or 'u', the leading n by n -* upper triangular part of the array A must contain the upper -* triangular matrix and the strictly lower triangular part of -* A is not referenced. -* Before entry with UPLO = 'L' or 'l', the leading n by n -* lower triangular part of the array A must contain the lower -* triangular matrix and the strictly upper triangular part of -* A is not referenced. -* Note that when DIAG = 'U' or 'u', the diagonal elements of -* A are not referenced either, but are assumed to be unity. -* Unchanged on exit. -* -* LDA - INTEGER. -* On entry, LDA specifies the first dimension of A as declared -* in the calling (sub) program. LDA must be at least -* max( 1, n ). -* Unchanged on exit. -* -* X - COMPLEX*16 array of dimension at least -* ( 1 + ( n - 1 )*abs( INCX ) ). -* Before entry, the incremented array X must contain the n -* element right-hand side vector b. On exit, X is overwritten -* with the solution vector x. -* -* INCX - INTEGER. -* On entry, INCX specifies the increment for the elements of -* X. INCX must not be zero. -* Unchanged on exit. -* -* -* Level 2 Blas routine. -* -* -- Written on 22-October-1986. -* Jack Dongarra, Argonne National Lab. -* Jeremy Du Croz, Nag Central Office. -* Sven Hammarling, Nag Central Office. -* Richard Hanson, Sandia National Labs. -* -* -* .. Parameters .. - COMPLEX*16 ZERO - PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) -* .. Local Scalars .. - COMPLEX*16 TEMP - INTEGER I, INFO, IX, J, JX, KX - LOGICAL NOCONJ, NOUNIT -* .. External Functions .. - LOGICAL LSAME - EXTERNAL LSAME -* .. External Subroutines .. - EXTERNAL XERBLA -* .. Intrinsic Functions .. - INTRINSIC DCONJG, MAX -* .. -* .. Executable Statements .. -* -* Test the input parameters. -* - INFO = 0 - IF ( .NOT.LSAME( UPLO , 'U' ).AND. - $ .NOT.LSAME( UPLO , 'L' ) )THEN - INFO = 1 - ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. - $ .NOT.LSAME( TRANS, 'T' ).AND. - $ .NOT.LSAME( TRANS, 'C' ) )THEN - INFO = 2 - ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. - $ .NOT.LSAME( DIAG , 'N' ) )THEN - INFO = 3 - ELSE IF( N.LT.0 )THEN - INFO = 4 - ELSE IF( LDA.LT.MAX( 1, N ) )THEN - INFO = 6 - ELSE IF( INCX.EQ.0 )THEN - INFO = 8 - END IF - IF( INFO.NE.0 )THEN - CALL XERBLA( 'ZTRSV ', INFO ) - RETURN - END IF -* -* Quick return if possible. -* - IF( N.EQ.0 ) - $ RETURN -* - NOCONJ = LSAME( TRANS, 'T' ) - NOUNIT = LSAME( DIAG , 'N' ) -* -* Set up the start point in X if the increment is not unity. This -* will be ( N - 1 )*INCX too small for descending loops. -* - IF( INCX.LE.0 )THEN - KX = 1 - ( N - 1 )*INCX - ELSE IF( INCX.NE.1 )THEN - KX = 1 - END IF -* -* Start the operations. In this version the elements of A are -* accessed sequentially with one pass through A. -* - IF( LSAME( TRANS, 'N' ) )THEN -* -* Form x := inv( A )*x. -* - IF( LSAME( UPLO, 'U' ) )THEN - IF( INCX.EQ.1 )THEN - DO 20, J = N, 1, -1 - IF( X( J ).NE.ZERO )THEN - IF( NOUNIT ) - $ X( J ) = X( J )/A( J, J ) - TEMP = X( J ) - DO 10, I = J - 1, 1, -1 - X( I ) = X( I ) - TEMP*A( I, J ) - 10 CONTINUE - END IF - 20 CONTINUE - ELSE - JX = KX + ( N - 1 )*INCX - DO 40, J = N, 1, -1 - IF( X( JX ).NE.ZERO )THEN - IF( NOUNIT ) - $ X( JX ) = X( JX )/A( J, J ) - TEMP = X( JX ) - IX = JX - DO 30, I = J - 1, 1, -1 - IX = IX - INCX - X( IX ) = X( IX ) - TEMP*A( I, J ) - 30 CONTINUE - END IF - JX = JX - INCX - 40 CONTINUE - END IF - ELSE - IF( INCX.EQ.1 )THEN - DO 60, J = 1, N - IF( X( J ).NE.ZERO )THEN - IF( NOUNIT ) - $ X( J ) = X( J )/A( J, J ) - TEMP = X( J ) - DO 50, I = J + 1, N - X( I ) = X( I ) - TEMP*A( I, J ) - 50 CONTINUE - END IF - 60 CONTINUE - ELSE - JX = KX - DO 80, J = 1, N - IF( X( JX ).NE.ZERO )THEN - IF( NOUNIT ) - $ X( JX ) = X( JX )/A( J, J ) - TEMP = X( JX ) - IX = JX - DO 70, I = J + 1, N - IX = IX + INCX - X( IX ) = X( IX ) - TEMP*A( I, J ) - 70 CONTINUE - END IF - JX = JX + INCX - 80 CONTINUE - END IF - END IF - ELSE -* -* Form x := inv( A' )*x or x := inv( conjg( A' ) )*x. -* - IF( LSAME( UPLO, 'U' ) )THEN - IF( INCX.EQ.1 )THEN - DO 110, J = 1, N - TEMP = X( J ) - IF( NOCONJ )THEN - DO 90, I = 1, J - 1 - TEMP = TEMP - A( I, J )*X( I ) - 90 CONTINUE - IF( NOUNIT ) - $ TEMP = TEMP/A( J, J ) - ELSE - DO 100, I = 1, J - 1 - TEMP = TEMP - DCONJG( A( I, J ) )*X( I ) - 100 CONTINUE - IF( NOUNIT ) - $ TEMP = TEMP/DCONJG( A( J, J ) ) - END IF - X( J ) = TEMP - 110 CONTINUE - ELSE - JX = KX - DO 140, J = 1, N - IX = KX - TEMP = X( JX ) - IF( NOCONJ )THEN - DO 120, I = 1, J - 1 - TEMP = TEMP - A( I, J )*X( IX ) - IX = IX + INCX - 120 CONTINUE - IF( NOUNIT ) - $ TEMP = TEMP/A( J, J ) - ELSE - DO 130, I = 1, J - 1 - TEMP = TEMP - DCONJG( A( I, J ) )*X( IX ) - IX = IX + INCX - 130 CONTINUE - IF( NOUNIT ) - $ TEMP = TEMP/DCONJG( A( J, J ) ) - END IF - X( JX ) = TEMP - JX = JX + INCX - 140 CONTINUE - END IF - ELSE - IF( INCX.EQ.1 )THEN - DO 170, J = N, 1, -1 - TEMP = X( J ) - IF( NOCONJ )THEN - DO 150, I = N, J + 1, -1 - TEMP = TEMP - A( I, J )*X( I ) - 150 CONTINUE - IF( NOUNIT ) - $ TEMP = TEMP/A( J, J ) - ELSE - DO 160, I = N, J + 1, -1 - TEMP = TEMP - DCONJG( A( I, J ) )*X( I ) - 160 CONTINUE - IF( NOUNIT ) - $ TEMP = TEMP/DCONJG( A( J, J ) ) - END IF - X( J ) = TEMP - 170 CONTINUE - ELSE - KX = KX + ( N - 1 )*INCX - JX = KX - DO 200, J = N, 1, -1 - IX = KX - TEMP = X( JX ) - IF( NOCONJ )THEN - DO 180, I = N, J + 1, -1 - TEMP = TEMP - A( I, J )*X( IX ) - IX = IX - INCX - 180 CONTINUE - IF( NOUNIT ) - $ TEMP = TEMP/A( J, J ) - ELSE - DO 190, I = N, J + 1, -1 - TEMP = TEMP - DCONJG( A( I, J ) )*X( IX ) - IX = IX - INCX - 190 CONTINUE - IF( NOUNIT ) - $ TEMP = TEMP/DCONJG( A( J, J ) ) - END IF - X( JX ) = TEMP - JX = JX - INCX - 200 CONTINUE - END IF - END IF - END IF -* - RETURN -* -* End of ZTRSV . -* - END |