diff options
Diffstat (limited to 'src/lib/blas/zher2k.f')
-rw-r--r-- | src/lib/blas/zher2k.f | 372 |
1 files changed, 0 insertions, 372 deletions
diff --git a/src/lib/blas/zher2k.f b/src/lib/blas/zher2k.f deleted file mode 100644 index 408d75cf..00000000 --- a/src/lib/blas/zher2k.f +++ /dev/null @@ -1,372 +0,0 @@ - SUBROUTINE ZHER2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, - $ C, LDC ) -* .. Scalar Arguments .. - CHARACTER TRANS, UPLO - INTEGER K, LDA, LDB, LDC, N - DOUBLE PRECISION BETA - COMPLEX*16 ALPHA -* .. -* .. Array Arguments .. - COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ) -* .. -* -* Purpose -* ======= -* -* ZHER2K performs one of the hermitian rank 2k operations -* -* C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C, -* -* or -* -* C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C, -* -* where alpha and beta are scalars with beta real, C is an n by n -* hermitian matrix and A and B are n by k matrices in the first case -* and k by n matrices in the second case. -* -* Parameters -* ========== -* -* UPLO - CHARACTER*1. -* On entry, UPLO specifies whether the upper or lower -* triangular part of the array C is to be referenced as -* follows: -* -* UPLO = 'U' or 'u' Only the upper triangular part of C -* is to be referenced. -* -* UPLO = 'L' or 'l' Only the lower triangular part of C -* is to be referenced. -* -* Unchanged on exit. -* -* TRANS - CHARACTER*1. -* On entry, TRANS specifies the operation to be performed as -* follows: -* -* TRANS = 'N' or 'n' C := alpha*A*conjg( B' ) + -* conjg( alpha )*B*conjg( A' ) + -* beta*C. -* -* TRANS = 'C' or 'c' C := alpha*conjg( A' )*B + -* conjg( alpha )*conjg( B' )*A + -* beta*C. -* -* Unchanged on exit. -* -* N - INTEGER. -* On entry, N specifies the order of the matrix C. N must be -* at least zero. -* Unchanged on exit. -* -* K - INTEGER. -* On entry with TRANS = 'N' or 'n', K specifies the number -* of columns of the matrices A and B, and on entry with -* TRANS = 'C' or 'c', K specifies the number of rows of the -* matrices A and B. K must be at least zero. -* Unchanged on exit. -* -* ALPHA - COMPLEX*16 . -* On entry, ALPHA specifies the scalar alpha. -* Unchanged on exit. -* -* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is -* k when TRANS = 'N' or 'n', and is n otherwise. -* Before entry with TRANS = 'N' or 'n', the leading n by k -* part of the array A must contain the matrix A, otherwise -* the leading k by n part of the array A must contain the -* matrix A. -* Unchanged on exit. -* -* LDA - INTEGER. -* On entry, LDA specifies the first dimension of A as declared -* in the calling (sub) program. When TRANS = 'N' or 'n' -* then LDA must be at least max( 1, n ), otherwise LDA must -* be at least max( 1, k ). -* Unchanged on exit. -* -* B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is -* k when TRANS = 'N' or 'n', and is n otherwise. -* Before entry with TRANS = 'N' or 'n', the leading n by k -* part of the array B must contain the matrix B, otherwise -* the leading k by n part of the array B must contain the -* matrix B. -* Unchanged on exit. -* -* LDB - INTEGER. -* On entry, LDB specifies the first dimension of B as declared -* in the calling (sub) program. When TRANS = 'N' or 'n' -* then LDB must be at least max( 1, n ), otherwise LDB must -* be at least max( 1, k ). -* Unchanged on exit. -* -* BETA - DOUBLE PRECISION . -* On entry, BETA specifies the scalar beta. -* Unchanged on exit. -* -* C - COMPLEX*16 array of DIMENSION ( LDC, n ). -* Before entry with UPLO = 'U' or 'u', the leading n by n -* upper triangular part of the array C must contain the upper -* triangular part of the hermitian matrix and the strictly -* lower triangular part of C is not referenced. On exit, the -* upper triangular part of the array C is overwritten by the -* upper triangular part of the updated matrix. -* Before entry with UPLO = 'L' or 'l', the leading n by n -* lower triangular part of the array C must contain the lower -* triangular part of the hermitian matrix and the strictly -* upper triangular part of C is not referenced. On exit, the -* lower triangular part of the array C is overwritten by the -* lower triangular part of the updated matrix. -* Note that the imaginary parts of the diagonal elements need -* not be set, they are assumed to be zero, and on exit they -* are set to zero. -* -* LDC - INTEGER. -* On entry, LDC specifies the first dimension of C as declared -* in the calling (sub) program. LDC must be at least -* max( 1, n ). -* Unchanged on exit. -* -* -* Level 3 Blas routine. -* -* -- Written on 8-February-1989. -* Jack Dongarra, Argonne National Laboratory. -* Iain Duff, AERE Harwell. -* Jeremy Du Croz, Numerical Algorithms Group Ltd. -* Sven Hammarling, Numerical Algorithms Group Ltd. -* -* -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1. -* Ed Anderson, Cray Research Inc. -* -* -* .. External Functions .. - LOGICAL LSAME - EXTERNAL LSAME -* .. -* .. External Subroutines .. - EXTERNAL XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC DBLE, DCONJG, MAX -* .. -* .. Local Scalars .. - LOGICAL UPPER - INTEGER I, INFO, J, L, NROWA - COMPLEX*16 TEMP1, TEMP2 -* .. -* .. Parameters .. - DOUBLE PRECISION ONE - PARAMETER ( ONE = 1.0D+0 ) - COMPLEX*16 ZERO - PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) -* .. -* .. Executable Statements .. -* -* Test the input parameters. -* - IF( LSAME( TRANS, 'N' ) ) THEN - NROWA = N - ELSE - NROWA = K - END IF - UPPER = LSAME( UPLO, 'U' ) -* - INFO = 0 - IF( ( .NOT.UPPER ) .AND. ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN - INFO = 1 - ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ) .AND. - $ ( .NOT.LSAME( TRANS, 'C' ) ) ) THEN - INFO = 2 - ELSE IF( N.LT.0 ) THEN - INFO = 3 - ELSE IF( K.LT.0 ) THEN - INFO = 4 - ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN - INFO = 7 - ELSE IF( LDB.LT.MAX( 1, NROWA ) ) THEN - INFO = 9 - ELSE IF( LDC.LT.MAX( 1, N ) ) THEN - INFO = 12 - END IF - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'ZHER2K', INFO ) - RETURN - END IF -* -* Quick return if possible. -* - IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND. - $ ( BETA.EQ.ONE ) ) )RETURN -* -* And when alpha.eq.zero. -* - IF( ALPHA.EQ.ZERO ) THEN - IF( UPPER ) THEN - IF( BETA.EQ.DBLE( ZERO ) ) THEN - DO 20 J = 1, N - DO 10 I = 1, J - C( I, J ) = ZERO - 10 CONTINUE - 20 CONTINUE - ELSE - DO 40 J = 1, N - DO 30 I = 1, J - 1 - C( I, J ) = BETA*C( I, J ) - 30 CONTINUE - C( J, J ) = BETA*DBLE( C( J, J ) ) - 40 CONTINUE - END IF - ELSE - IF( BETA.EQ.DBLE( ZERO ) ) THEN - DO 60 J = 1, N - DO 50 I = J, N - C( I, J ) = ZERO - 50 CONTINUE - 60 CONTINUE - ELSE - DO 80 J = 1, N - C( J, J ) = BETA*DBLE( C( J, J ) ) - DO 70 I = J + 1, N - C( I, J ) = BETA*C( I, J ) - 70 CONTINUE - 80 CONTINUE - END IF - END IF - RETURN - END IF -* -* Start the operations. -* - IF( LSAME( TRANS, 'N' ) ) THEN -* -* Form C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + -* C. -* - IF( UPPER ) THEN - DO 130 J = 1, N - IF( BETA.EQ.DBLE( ZERO ) ) THEN - DO 90 I = 1, J - C( I, J ) = ZERO - 90 CONTINUE - ELSE IF( BETA.NE.ONE ) THEN - DO 100 I = 1, J - 1 - C( I, J ) = BETA*C( I, J ) - 100 CONTINUE - C( J, J ) = BETA*DBLE( C( J, J ) ) - ELSE - C( J, J ) = DBLE( C( J, J ) ) - END IF - DO 120 L = 1, K - IF( ( A( J, L ).NE.ZERO ) .OR. ( B( J, L ).NE.ZERO ) ) - $ THEN - TEMP1 = ALPHA*DCONJG( B( J, L ) ) - TEMP2 = DCONJG( ALPHA*A( J, L ) ) - DO 110 I = 1, J - 1 - C( I, J ) = C( I, J ) + A( I, L )*TEMP1 + - $ B( I, L )*TEMP2 - 110 CONTINUE - C( J, J ) = DBLE( C( J, J ) ) + - $ DBLE( A( J, L )*TEMP1+B( J, L )*TEMP2 ) - END IF - 120 CONTINUE - 130 CONTINUE - ELSE - DO 180 J = 1, N - IF( BETA.EQ.DBLE( ZERO ) ) THEN - DO 140 I = J, N - C( I, J ) = ZERO - 140 CONTINUE - ELSE IF( BETA.NE.ONE ) THEN - DO 150 I = J + 1, N - C( I, J ) = BETA*C( I, J ) - 150 CONTINUE - C( J, J ) = BETA*DBLE( C( J, J ) ) - ELSE - C( J, J ) = DBLE( C( J, J ) ) - END IF - DO 170 L = 1, K - IF( ( A( J, L ).NE.ZERO ) .OR. ( B( J, L ).NE.ZERO ) ) - $ THEN - TEMP1 = ALPHA*DCONJG( B( J, L ) ) - TEMP2 = DCONJG( ALPHA*A( J, L ) ) - DO 160 I = J + 1, N - C( I, J ) = C( I, J ) + A( I, L )*TEMP1 + - $ B( I, L )*TEMP2 - 160 CONTINUE - C( J, J ) = DBLE( C( J, J ) ) + - $ DBLE( A( J, L )*TEMP1+B( J, L )*TEMP2 ) - END IF - 170 CONTINUE - 180 CONTINUE - END IF - ELSE -* -* Form C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + -* C. -* - IF( UPPER ) THEN - DO 210 J = 1, N - DO 200 I = 1, J - TEMP1 = ZERO - TEMP2 = ZERO - DO 190 L = 1, K - TEMP1 = TEMP1 + DCONJG( A( L, I ) )*B( L, J ) - TEMP2 = TEMP2 + DCONJG( B( L, I ) )*A( L, J ) - 190 CONTINUE - IF( I.EQ.J ) THEN - IF( BETA.EQ.DBLE( ZERO ) ) THEN - C( J, J ) = DBLE( ALPHA*TEMP1+DCONJG( ALPHA )* - $ TEMP2 ) - ELSE - C( J, J ) = BETA*DBLE( C( J, J ) ) + - $ DBLE( ALPHA*TEMP1+DCONJG( ALPHA )* - $ TEMP2 ) - END IF - ELSE - IF( BETA.EQ.DBLE( ZERO ) ) THEN - C( I, J ) = ALPHA*TEMP1 + DCONJG( ALPHA )*TEMP2 - ELSE - C( I, J ) = BETA*C( I, J ) + ALPHA*TEMP1 + - $ DCONJG( ALPHA )*TEMP2 - END IF - END IF - 200 CONTINUE - 210 CONTINUE - ELSE - DO 240 J = 1, N - DO 230 I = J, N - TEMP1 = ZERO - TEMP2 = ZERO - DO 220 L = 1, K - TEMP1 = TEMP1 + DCONJG( A( L, I ) )*B( L, J ) - TEMP2 = TEMP2 + DCONJG( B( L, I ) )*A( L, J ) - 220 CONTINUE - IF( I.EQ.J ) THEN - IF( BETA.EQ.DBLE( ZERO ) ) THEN - C( J, J ) = DBLE( ALPHA*TEMP1+DCONJG( ALPHA )* - $ TEMP2 ) - ELSE - C( J, J ) = BETA*DBLE( C( J, J ) ) + - $ DBLE( ALPHA*TEMP1+DCONJG( ALPHA )* - $ TEMP2 ) - END IF - ELSE - IF( BETA.EQ.DBLE( ZERO ) ) THEN - C( I, J ) = ALPHA*TEMP1 + DCONJG( ALPHA )*TEMP2 - ELSE - C( I, J ) = BETA*C( I, J ) + ALPHA*TEMP1 + - $ DCONJG( ALPHA )*TEMP2 - END IF - END IF - 230 CONTINUE - 240 CONTINUE - END IF - END IF -* - RETURN -* -* End of ZHER2K. -* - END |