diff options
Diffstat (limited to 'src/lib/blas/zhemv.f')
-rw-r--r-- | src/lib/blas/zhemv.f | 266 |
1 files changed, 0 insertions, 266 deletions
diff --git a/src/lib/blas/zhemv.f b/src/lib/blas/zhemv.f deleted file mode 100644 index 54aa7b90..00000000 --- a/src/lib/blas/zhemv.f +++ /dev/null @@ -1,266 +0,0 @@ - SUBROUTINE ZHEMV ( UPLO, N, ALPHA, A, LDA, X, INCX, - $ BETA, Y, INCY ) -* .. Scalar Arguments .. - COMPLEX*16 ALPHA, BETA - INTEGER INCX, INCY, LDA, N - CHARACTER*1 UPLO -* .. Array Arguments .. - COMPLEX*16 A( LDA, * ), X( * ), Y( * ) -* .. -* -* Purpose -* ======= -* -* ZHEMV performs the matrix-vector operation -* -* y := alpha*A*x + beta*y, -* -* where alpha and beta are scalars, x and y are n element vectors and -* A is an n by n hermitian matrix. -* -* Parameters -* ========== -* -* UPLO - CHARACTER*1. -* On entry, UPLO specifies whether the upper or lower -* triangular part of the array A is to be referenced as -* follows: -* -* UPLO = 'U' or 'u' Only the upper triangular part of A -* is to be referenced. -* -* UPLO = 'L' or 'l' Only the lower triangular part of A -* is to be referenced. -* -* Unchanged on exit. -* -* N - INTEGER. -* On entry, N specifies the order of the matrix A. -* N must be at least zero. -* Unchanged on exit. -* -* ALPHA - COMPLEX*16 . -* On entry, ALPHA specifies the scalar alpha. -* Unchanged on exit. -* -* A - COMPLEX*16 array of DIMENSION ( LDA, n ). -* Before entry with UPLO = 'U' or 'u', the leading n by n -* upper triangular part of the array A must contain the upper -* triangular part of the hermitian matrix and the strictly -* lower triangular part of A is not referenced. -* Before entry with UPLO = 'L' or 'l', the leading n by n -* lower triangular part of the array A must contain the lower -* triangular part of the hermitian matrix and the strictly -* upper triangular part of A is not referenced. -* Note that the imaginary parts of the diagonal elements need -* not be set and are assumed to be zero. -* Unchanged on exit. -* -* LDA - INTEGER. -* On entry, LDA specifies the first dimension of A as declared -* in the calling (sub) program. LDA must be at least -* max( 1, n ). -* Unchanged on exit. -* -* X - COMPLEX*16 array of dimension at least -* ( 1 + ( n - 1 )*abs( INCX ) ). -* Before entry, the incremented array X must contain the n -* element vector x. -* Unchanged on exit. -* -* INCX - INTEGER. -* On entry, INCX specifies the increment for the elements of -* X. INCX must not be zero. -* Unchanged on exit. -* -* BETA - COMPLEX*16 . -* On entry, BETA specifies the scalar beta. When BETA is -* supplied as zero then Y need not be set on input. -* Unchanged on exit. -* -* Y - COMPLEX*16 array of dimension at least -* ( 1 + ( n - 1 )*abs( INCY ) ). -* Before entry, the incremented array Y must contain the n -* element vector y. On exit, Y is overwritten by the updated -* vector y. -* -* INCY - INTEGER. -* On entry, INCY specifies the increment for the elements of -* Y. INCY must not be zero. -* Unchanged on exit. -* -* -* Level 2 Blas routine. -* -* -- Written on 22-October-1986. -* Jack Dongarra, Argonne National Lab. -* Jeremy Du Croz, Nag Central Office. -* Sven Hammarling, Nag Central Office. -* Richard Hanson, Sandia National Labs. -* -* -* .. Parameters .. - COMPLEX*16 ONE - PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) - COMPLEX*16 ZERO - PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) -* .. Local Scalars .. - COMPLEX*16 TEMP1, TEMP2 - INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY -* .. External Functions .. - LOGICAL LSAME - EXTERNAL LSAME -* .. External Subroutines .. - EXTERNAL XERBLA -* .. Intrinsic Functions .. - INTRINSIC DCONJG, MAX, DBLE -* .. -* .. Executable Statements .. -* -* Test the input parameters. -* - INFO = 0 - IF ( .NOT.LSAME( UPLO, 'U' ).AND. - $ .NOT.LSAME( UPLO, 'L' ) )THEN - INFO = 1 - ELSE IF( N.LT.0 )THEN - INFO = 2 - ELSE IF( LDA.LT.MAX( 1, N ) )THEN - INFO = 5 - ELSE IF( INCX.EQ.0 )THEN - INFO = 7 - ELSE IF( INCY.EQ.0 )THEN - INFO = 10 - END IF - IF( INFO.NE.0 )THEN - CALL XERBLA( 'ZHEMV ', INFO ) - RETURN - END IF -* -* Quick return if possible. -* - IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) - $ RETURN -* -* Set up the start points in X and Y. -* - IF( INCX.GT.0 )THEN - KX = 1 - ELSE - KX = 1 - ( N - 1 )*INCX - END IF - IF( INCY.GT.0 )THEN - KY = 1 - ELSE - KY = 1 - ( N - 1 )*INCY - END IF -* -* Start the operations. In this version the elements of A are -* accessed sequentially with one pass through the triangular part -* of A. -* -* First form y := beta*y. -* - IF( BETA.NE.ONE )THEN - IF( INCY.EQ.1 )THEN - IF( BETA.EQ.ZERO )THEN - DO 10, I = 1, N - Y( I ) = ZERO - 10 CONTINUE - ELSE - DO 20, I = 1, N - Y( I ) = BETA*Y( I ) - 20 CONTINUE - END IF - ELSE - IY = KY - IF( BETA.EQ.ZERO )THEN - DO 30, I = 1, N - Y( IY ) = ZERO - IY = IY + INCY - 30 CONTINUE - ELSE - DO 40, I = 1, N - Y( IY ) = BETA*Y( IY ) - IY = IY + INCY - 40 CONTINUE - END IF - END IF - END IF - IF( ALPHA.EQ.ZERO ) - $ RETURN - IF( LSAME( UPLO, 'U' ) )THEN -* -* Form y when A is stored in upper triangle. -* - IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN - DO 60, J = 1, N - TEMP1 = ALPHA*X( J ) - TEMP2 = ZERO - DO 50, I = 1, J - 1 - Y( I ) = Y( I ) + TEMP1*A( I, J ) - TEMP2 = TEMP2 + DCONJG( A( I, J ) )*X( I ) - 50 CONTINUE - Y( J ) = Y( J ) + TEMP1*DBLE( A( J, J ) ) + ALPHA*TEMP2 - 60 CONTINUE - ELSE - JX = KX - JY = KY - DO 80, J = 1, N - TEMP1 = ALPHA*X( JX ) - TEMP2 = ZERO - IX = KX - IY = KY - DO 70, I = 1, J - 1 - Y( IY ) = Y( IY ) + TEMP1*A( I, J ) - TEMP2 = TEMP2 + DCONJG( A( I, J ) )*X( IX ) - IX = IX + INCX - IY = IY + INCY - 70 CONTINUE - Y( JY ) = Y( JY ) + TEMP1*DBLE( A( J, J ) ) + ALPHA*TEMP2 - JX = JX + INCX - JY = JY + INCY - 80 CONTINUE - END IF - ELSE -* -* Form y when A is stored in lower triangle. -* - IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN - DO 100, J = 1, N - TEMP1 = ALPHA*X( J ) - TEMP2 = ZERO - Y( J ) = Y( J ) + TEMP1*DBLE( A( J, J ) ) - DO 90, I = J + 1, N - Y( I ) = Y( I ) + TEMP1*A( I, J ) - TEMP2 = TEMP2 + DCONJG( A( I, J ) )*X( I ) - 90 CONTINUE - Y( J ) = Y( J ) + ALPHA*TEMP2 - 100 CONTINUE - ELSE - JX = KX - JY = KY - DO 120, J = 1, N - TEMP1 = ALPHA*X( JX ) - TEMP2 = ZERO - Y( JY ) = Y( JY ) + TEMP1*DBLE( A( J, J ) ) - IX = JX - IY = JY - DO 110, I = J + 1, N - IX = IX + INCX - IY = IY + INCY - Y( IY ) = Y( IY ) + TEMP1*A( I, J ) - TEMP2 = TEMP2 + DCONJG( A( I, J ) )*X( IX ) - 110 CONTINUE - Y( JY ) = Y( JY ) + ALPHA*TEMP2 - JX = JX + INCX - JY = JY + INCY - 120 CONTINUE - END IF - END IF -* - RETURN -* -* End of ZHEMV . -* - END |