diff options
Diffstat (limited to 'src/lib/blas/dtrmm.f')
-rw-r--r-- | src/lib/blas/dtrmm.f | 355 |
1 files changed, 0 insertions, 355 deletions
diff --git a/src/lib/blas/dtrmm.f b/src/lib/blas/dtrmm.f deleted file mode 100644 index f98da46a..00000000 --- a/src/lib/blas/dtrmm.f +++ /dev/null @@ -1,355 +0,0 @@ - SUBROUTINE DTRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, - $ B, LDB ) -* .. Scalar Arguments .. - CHARACTER*1 SIDE, UPLO, TRANSA, DIAG - INTEGER M, N, LDA, LDB - DOUBLE PRECISION ALPHA -* .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), B( LDB, * ) -* .. -* -* Purpose -* ======= -* -* DTRMM performs one of the matrix-matrix operations -* -* B := alpha*op( A )*B, or B := alpha*B*op( A ), -* -* where alpha is a scalar, B is an m by n matrix, A is a unit, or -* non-unit, upper or lower triangular matrix and op( A ) is one of -* -* op( A ) = A or op( A ) = A'. -* -* Parameters -* ========== -* -* SIDE - CHARACTER*1. -* On entry, SIDE specifies whether op( A ) multiplies B from -* the left or right as follows: -* -* SIDE = 'L' or 'l' B := alpha*op( A )*B. -* -* SIDE = 'R' or 'r' B := alpha*B*op( A ). -* -* Unchanged on exit. -* -* UPLO - CHARACTER*1. -* On entry, UPLO specifies whether the matrix A is an upper or -* lower triangular matrix as follows: -* -* UPLO = 'U' or 'u' A is an upper triangular matrix. -* -* UPLO = 'L' or 'l' A is a lower triangular matrix. -* -* Unchanged on exit. -* -* TRANSA - CHARACTER*1. -* On entry, TRANSA specifies the form of op( A ) to be used in -* the matrix multiplication as follows: -* -* TRANSA = 'N' or 'n' op( A ) = A. -* -* TRANSA = 'T' or 't' op( A ) = A'. -* -* TRANSA = 'C' or 'c' op( A ) = A'. -* -* Unchanged on exit. -* -* DIAG - CHARACTER*1. -* On entry, DIAG specifies whether or not A is unit triangular -* as follows: -* -* DIAG = 'U' or 'u' A is assumed to be unit triangular. -* -* DIAG = 'N' or 'n' A is not assumed to be unit -* triangular. -* -* Unchanged on exit. -* -* M - INTEGER. -* On entry, M specifies the number of rows of B. M must be at -* least zero. -* Unchanged on exit. -* -* N - INTEGER. -* On entry, N specifies the number of columns of B. N must be -* at least zero. -* Unchanged on exit. -* -* ALPHA - DOUBLE PRECISION. -* On entry, ALPHA specifies the scalar alpha. When alpha is -* zero then A is not referenced and B need not be set before -* entry. -* Unchanged on exit. -* -* A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m -* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. -* Before entry with UPLO = 'U' or 'u', the leading k by k -* upper triangular part of the array A must contain the upper -* triangular matrix and the strictly lower triangular part of -* A is not referenced. -* Before entry with UPLO = 'L' or 'l', the leading k by k -* lower triangular part of the array A must contain the lower -* triangular matrix and the strictly upper triangular part of -* A is not referenced. -* Note that when DIAG = 'U' or 'u', the diagonal elements of -* A are not referenced either, but are assumed to be unity. -* Unchanged on exit. -* -* LDA - INTEGER. -* On entry, LDA specifies the first dimension of A as declared -* in the calling (sub) program. When SIDE = 'L' or 'l' then -* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' -* then LDA must be at least max( 1, n ). -* Unchanged on exit. -* -* B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). -* Before entry, the leading m by n part of the array B must -* contain the matrix B, and on exit is overwritten by the -* transformed matrix. -* -* LDB - INTEGER. -* On entry, LDB specifies the first dimension of B as declared -* in the calling (sub) program. LDB must be at least -* max( 1, m ). -* Unchanged on exit. -* -* -* Level 3 Blas routine. -* -* -- Written on 8-February-1989. -* Jack Dongarra, Argonne National Laboratory. -* Iain Duff, AERE Harwell. -* Jeremy Du Croz, Numerical Algorithms Group Ltd. -* Sven Hammarling, Numerical Algorithms Group Ltd. -* -* -* .. External Functions .. - LOGICAL LSAME - EXTERNAL LSAME -* .. External Subroutines .. - EXTERNAL XERBLA -* .. Intrinsic Functions .. - INTRINSIC MAX -* .. Local Scalars .. - LOGICAL LSIDE, NOUNIT, UPPER - INTEGER I, INFO, J, K, NROWA - DOUBLE PRECISION TEMP -* .. Parameters .. - DOUBLE PRECISION ONE , ZERO - PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) -* .. -* .. Executable Statements .. -* -* Test the input parameters. -* - LSIDE = LSAME( SIDE , 'L' ) - IF( LSIDE )THEN - NROWA = M - ELSE - NROWA = N - END IF - NOUNIT = LSAME( DIAG , 'N' ) - UPPER = LSAME( UPLO , 'U' ) -* - INFO = 0 - IF( ( .NOT.LSIDE ).AND. - $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN - INFO = 1 - ELSE IF( ( .NOT.UPPER ).AND. - $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN - INFO = 2 - ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND. - $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND. - $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN - INFO = 3 - ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND. - $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN - INFO = 4 - ELSE IF( M .LT.0 )THEN - INFO = 5 - ELSE IF( N .LT.0 )THEN - INFO = 6 - ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN - INFO = 9 - ELSE IF( LDB.LT.MAX( 1, M ) )THEN - INFO = 11 - END IF - IF( INFO.NE.0 )THEN - CALL XERBLA( 'DTRMM ', INFO ) - RETURN - END IF -* -* Quick return if possible. -* - IF( N.EQ.0 ) - $ RETURN -* -* And when alpha.eq.zero. -* - IF( ALPHA.EQ.ZERO )THEN - DO 20, J = 1, N - DO 10, I = 1, M - B( I, J ) = ZERO - 10 CONTINUE - 20 CONTINUE - RETURN - END IF -* -* Start the operations. -* - IF( LSIDE )THEN - IF( LSAME( TRANSA, 'N' ) )THEN -* -* Form B := alpha*A*B. -* - IF( UPPER )THEN - DO 50, J = 1, N - DO 40, K = 1, M - IF( B( K, J ).NE.ZERO )THEN - TEMP = ALPHA*B( K, J ) - DO 30, I = 1, K - 1 - B( I, J ) = B( I, J ) + TEMP*A( I, K ) - 30 CONTINUE - IF( NOUNIT ) - $ TEMP = TEMP*A( K, K ) - B( K, J ) = TEMP - END IF - 40 CONTINUE - 50 CONTINUE - ELSE - DO 80, J = 1, N - DO 70 K = M, 1, -1 - IF( B( K, J ).NE.ZERO )THEN - TEMP = ALPHA*B( K, J ) - B( K, J ) = TEMP - IF( NOUNIT ) - $ B( K, J ) = B( K, J )*A( K, K ) - DO 60, I = K + 1, M - B( I, J ) = B( I, J ) + TEMP*A( I, K ) - 60 CONTINUE - END IF - 70 CONTINUE - 80 CONTINUE - END IF - ELSE -* -* Form B := alpha*B*A'. -* - IF( UPPER )THEN - DO 110, J = 1, N - DO 100, I = M, 1, -1 - TEMP = B( I, J ) - IF( NOUNIT ) - $ TEMP = TEMP*A( I, I ) - DO 90, K = 1, I - 1 - TEMP = TEMP + A( K, I )*B( K, J ) - 90 CONTINUE - B( I, J ) = ALPHA*TEMP - 100 CONTINUE - 110 CONTINUE - ELSE - DO 140, J = 1, N - DO 130, I = 1, M - TEMP = B( I, J ) - IF( NOUNIT ) - $ TEMP = TEMP*A( I, I ) - DO 120, K = I + 1, M - TEMP = TEMP + A( K, I )*B( K, J ) - 120 CONTINUE - B( I, J ) = ALPHA*TEMP - 130 CONTINUE - 140 CONTINUE - END IF - END IF - ELSE - IF( LSAME( TRANSA, 'N' ) )THEN -* -* Form B := alpha*B*A. -* - IF( UPPER )THEN - DO 180, J = N, 1, -1 - TEMP = ALPHA - IF( NOUNIT ) - $ TEMP = TEMP*A( J, J ) - DO 150, I = 1, M - B( I, J ) = TEMP*B( I, J ) - 150 CONTINUE - DO 170, K = 1, J - 1 - IF( A( K, J ).NE.ZERO )THEN - TEMP = ALPHA*A( K, J ) - DO 160, I = 1, M - B( I, J ) = B( I, J ) + TEMP*B( I, K ) - 160 CONTINUE - END IF - 170 CONTINUE - 180 CONTINUE - ELSE - DO 220, J = 1, N - TEMP = ALPHA - IF( NOUNIT ) - $ TEMP = TEMP*A( J, J ) - DO 190, I = 1, M - B( I, J ) = TEMP*B( I, J ) - 190 CONTINUE - DO 210, K = J + 1, N - IF( A( K, J ).NE.ZERO )THEN - TEMP = ALPHA*A( K, J ) - DO 200, I = 1, M - B( I, J ) = B( I, J ) + TEMP*B( I, K ) - 200 CONTINUE - END IF - 210 CONTINUE - 220 CONTINUE - END IF - ELSE -* -* Form B := alpha*B*A'. -* - IF( UPPER )THEN - DO 260, K = 1, N - DO 240, J = 1, K - 1 - IF( A( J, K ).NE.ZERO )THEN - TEMP = ALPHA*A( J, K ) - DO 230, I = 1, M - B( I, J ) = B( I, J ) + TEMP*B( I, K ) - 230 CONTINUE - END IF - 240 CONTINUE - TEMP = ALPHA - IF( NOUNIT ) - $ TEMP = TEMP*A( K, K ) - IF( TEMP.NE.ONE )THEN - DO 250, I = 1, M - B( I, K ) = TEMP*B( I, K ) - 250 CONTINUE - END IF - 260 CONTINUE - ELSE - DO 300, K = N, 1, -1 - DO 280, J = K + 1, N - IF( A( J, K ).NE.ZERO )THEN - TEMP = ALPHA*A( J, K ) - DO 270, I = 1, M - B( I, J ) = B( I, J ) + TEMP*B( I, K ) - 270 CONTINUE - END IF - 280 CONTINUE - TEMP = ALPHA - IF( NOUNIT ) - $ TEMP = TEMP*A( K, K ) - IF( TEMP.NE.ONE )THEN - DO 290, I = 1, M - B( I, K ) = TEMP*B( I, K ) - 290 CONTINUE - END IF - 300 CONTINUE - END IF - END IF - END IF -* - RETURN -* -* End of DTRMM . -* - END |