summaryrefslogtreecommitdiff
path: root/src/lib/blas/dtpsv.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/blas/dtpsv.f')
-rw-r--r--src/lib/blas/dtpsv.f302
1 files changed, 0 insertions, 302 deletions
diff --git a/src/lib/blas/dtpsv.f b/src/lib/blas/dtpsv.f
deleted file mode 100644
index 91930d9f..00000000
--- a/src/lib/blas/dtpsv.f
+++ /dev/null
@@ -1,302 +0,0 @@
- SUBROUTINE DTPSV ( UPLO, TRANS, DIAG, N, AP, X, INCX )
-* .. Scalar Arguments ..
- INTEGER INCX, N
- CHARACTER*1 DIAG, TRANS, UPLO
-* .. Array Arguments ..
- DOUBLE PRECISION AP( * ), X( * )
-* ..
-*
-* Purpose
-* =======
-*
-* DTPSV solves one of the systems of equations
-*
-* A*x = b, or A'*x = b,
-*
-* where b and x are n element vectors and A is an n by n unit, or
-* non-unit, upper or lower triangular matrix, supplied in packed form.
-*
-* No test for singularity or near-singularity is included in this
-* routine. Such tests must be performed before calling this routine.
-*
-* Parameters
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the matrix is an upper or
-* lower triangular matrix as follows:
-*
-* UPLO = 'U' or 'u' A is an upper triangular matrix.
-*
-* UPLO = 'L' or 'l' A is a lower triangular matrix.
-*
-* Unchanged on exit.
-*
-* TRANS - CHARACTER*1.
-* On entry, TRANS specifies the equations to be solved as
-* follows:
-*
-* TRANS = 'N' or 'n' A*x = b.
-*
-* TRANS = 'T' or 't' A'*x = b.
-*
-* TRANS = 'C' or 'c' A'*x = b.
-*
-* Unchanged on exit.
-*
-* DIAG - CHARACTER*1.
-* On entry, DIAG specifies whether or not A is unit
-* triangular as follows:
-*
-* DIAG = 'U' or 'u' A is assumed to be unit triangular.
-*
-* DIAG = 'N' or 'n' A is not assumed to be unit
-* triangular.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* AP - DOUBLE PRECISION array of DIMENSION at least
-* ( ( n*( n + 1 ) )/2 ).
-* Before entry with UPLO = 'U' or 'u', the array AP must
-* contain the upper triangular matrix packed sequentially,
-* column by column, so that AP( 1 ) contains a( 1, 1 ),
-* AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
-* respectively, and so on.
-* Before entry with UPLO = 'L' or 'l', the array AP must
-* contain the lower triangular matrix packed sequentially,
-* column by column, so that AP( 1 ) contains a( 1, 1 ),
-* AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
-* respectively, and so on.
-* Note that when DIAG = 'U' or 'u', the diagonal elements of
-* A are not referenced, but are assumed to be unity.
-* Unchanged on exit.
-*
-* X - DOUBLE PRECISION array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the n
-* element right-hand side vector b. On exit, X is overwritten
-* with the solution vector x.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-*
-* .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D+0 )
-* .. Local Scalars ..
- DOUBLE PRECISION TEMP
- INTEGER I, INFO, IX, J, JX, K, KK, KX
- LOGICAL NOUNIT
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Executable Statements ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF ( .NOT.LSAME( UPLO , 'U' ).AND.
- $ .NOT.LSAME( UPLO , 'L' ) )THEN
- INFO = 1
- ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
- $ .NOT.LSAME( TRANS, 'T' ).AND.
- $ .NOT.LSAME( TRANS, 'C' ) )THEN
- INFO = 2
- ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
- $ .NOT.LSAME( DIAG , 'N' ) )THEN
- INFO = 3
- ELSE IF( N.LT.0 )THEN
- INFO = 4
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 7
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'DTPSV ', INFO )
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF( N.EQ.0 )
- $ RETURN
-*
- NOUNIT = LSAME( DIAG, 'N' )
-*
-* Set up the start point in X if the increment is not unity. This
-* will be ( N - 1 )*INCX too small for descending loops.
-*
- IF( INCX.LE.0 )THEN
- KX = 1 - ( N - 1 )*INCX
- ELSE IF( INCX.NE.1 )THEN
- KX = 1
- END IF
-*
-* Start the operations. In this version the elements of AP are
-* accessed sequentially with one pass through AP.
-*
- IF( LSAME( TRANS, 'N' ) )THEN
-*
-* Form x := inv( A )*x.
-*
- IF( LSAME( UPLO, 'U' ) )THEN
- KK = ( N*( N + 1 ) )/2
- IF( INCX.EQ.1 )THEN
- DO 20, J = N, 1, -1
- IF( X( J ).NE.ZERO )THEN
- IF( NOUNIT )
- $ X( J ) = X( J )/AP( KK )
- TEMP = X( J )
- K = KK - 1
- DO 10, I = J - 1, 1, -1
- X( I ) = X( I ) - TEMP*AP( K )
- K = K - 1
- 10 CONTINUE
- END IF
- KK = KK - J
- 20 CONTINUE
- ELSE
- JX = KX + ( N - 1 )*INCX
- DO 40, J = N, 1, -1
- IF( X( JX ).NE.ZERO )THEN
- IF( NOUNIT )
- $ X( JX ) = X( JX )/AP( KK )
- TEMP = X( JX )
- IX = JX
- DO 30, K = KK - 1, KK - J + 1, -1
- IX = IX - INCX
- X( IX ) = X( IX ) - TEMP*AP( K )
- 30 CONTINUE
- END IF
- JX = JX - INCX
- KK = KK - J
- 40 CONTINUE
- END IF
- ELSE
- KK = 1
- IF( INCX.EQ.1 )THEN
- DO 60, J = 1, N
- IF( X( J ).NE.ZERO )THEN
- IF( NOUNIT )
- $ X( J ) = X( J )/AP( KK )
- TEMP = X( J )
- K = KK + 1
- DO 50, I = J + 1, N
- X( I ) = X( I ) - TEMP*AP( K )
- K = K + 1
- 50 CONTINUE
- END IF
- KK = KK + ( N - J + 1 )
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80, J = 1, N
- IF( X( JX ).NE.ZERO )THEN
- IF( NOUNIT )
- $ X( JX ) = X( JX )/AP( KK )
- TEMP = X( JX )
- IX = JX
- DO 70, K = KK + 1, KK + N - J
- IX = IX + INCX
- X( IX ) = X( IX ) - TEMP*AP( K )
- 70 CONTINUE
- END IF
- JX = JX + INCX
- KK = KK + ( N - J + 1 )
- 80 CONTINUE
- END IF
- END IF
- ELSE
-*
-* Form x := inv( A' )*x.
-*
- IF( LSAME( UPLO, 'U' ) )THEN
- KK = 1
- IF( INCX.EQ.1 )THEN
- DO 100, J = 1, N
- TEMP = X( J )
- K = KK
- DO 90, I = 1, J - 1
- TEMP = TEMP - AP( K )*X( I )
- K = K + 1
- 90 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/AP( KK + J - 1 )
- X( J ) = TEMP
- KK = KK + J
- 100 CONTINUE
- ELSE
- JX = KX
- DO 120, J = 1, N
- TEMP = X( JX )
- IX = KX
- DO 110, K = KK, KK + J - 2
- TEMP = TEMP - AP( K )*X( IX )
- IX = IX + INCX
- 110 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/AP( KK + J - 1 )
- X( JX ) = TEMP
- JX = JX + INCX
- KK = KK + J
- 120 CONTINUE
- END IF
- ELSE
- KK = ( N*( N + 1 ) )/2
- IF( INCX.EQ.1 )THEN
- DO 140, J = N, 1, -1
- TEMP = X( J )
- K = KK
- DO 130, I = N, J + 1, -1
- TEMP = TEMP - AP( K )*X( I )
- K = K - 1
- 130 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/AP( KK - N + J )
- X( J ) = TEMP
- KK = KK - ( N - J + 1 )
- 140 CONTINUE
- ELSE
- KX = KX + ( N - 1 )*INCX
- JX = KX
- DO 160, J = N, 1, -1
- TEMP = X( JX )
- IX = KX
- DO 150, K = KK, KK - ( N - ( J + 1 ) ), -1
- TEMP = TEMP - AP( K )*X( IX )
- IX = IX - INCX
- 150 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/AP( KK - N + J )
- X( JX ) = TEMP
- JX = JX - INCX
- KK = KK - (N - J + 1 )
- 160 CONTINUE
- END IF
- END IF
- END IF
-*
- RETURN
-*
-* End of DTPSV .
-*
- END