summaryrefslogtreecommitdiff
path: root/src/lib/blas/dtbsv.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/blas/dtbsv.f')
-rw-r--r--src/lib/blas/dtbsv.f346
1 files changed, 0 insertions, 346 deletions
diff --git a/src/lib/blas/dtbsv.f b/src/lib/blas/dtbsv.f
deleted file mode 100644
index d87ed82d..00000000
--- a/src/lib/blas/dtbsv.f
+++ /dev/null
@@ -1,346 +0,0 @@
- SUBROUTINE DTBSV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX )
-* .. Scalar Arguments ..
- INTEGER INCX, K, LDA, N
- CHARACTER*1 DIAG, TRANS, UPLO
-* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), X( * )
-* ..
-*
-* Purpose
-* =======
-*
-* DTBSV solves one of the systems of equations
-*
-* A*x = b, or A'*x = b,
-*
-* where b and x are n element vectors and A is an n by n unit, or
-* non-unit, upper or lower triangular band matrix, with ( k + 1 )
-* diagonals.
-*
-* No test for singularity or near-singularity is included in this
-* routine. Such tests must be performed before calling this routine.
-*
-* Parameters
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the matrix is an upper or
-* lower triangular matrix as follows:
-*
-* UPLO = 'U' or 'u' A is an upper triangular matrix.
-*
-* UPLO = 'L' or 'l' A is a lower triangular matrix.
-*
-* Unchanged on exit.
-*
-* TRANS - CHARACTER*1.
-* On entry, TRANS specifies the equations to be solved as
-* follows:
-*
-* TRANS = 'N' or 'n' A*x = b.
-*
-* TRANS = 'T' or 't' A'*x = b.
-*
-* TRANS = 'C' or 'c' A'*x = b.
-*
-* Unchanged on exit.
-*
-* DIAG - CHARACTER*1.
-* On entry, DIAG specifies whether or not A is unit
-* triangular as follows:
-*
-* DIAG = 'U' or 'u' A is assumed to be unit triangular.
-*
-* DIAG = 'N' or 'n' A is not assumed to be unit
-* triangular.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* K - INTEGER.
-* On entry with UPLO = 'U' or 'u', K specifies the number of
-* super-diagonals of the matrix A.
-* On entry with UPLO = 'L' or 'l', K specifies the number of
-* sub-diagonals of the matrix A.
-* K must satisfy 0 .le. K.
-* Unchanged on exit.
-*
-* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
-* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
-* by n part of the array A must contain the upper triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row
-* ( k + 1 ) of the array, the first super-diagonal starting at
-* position 2 in row k, and so on. The top left k by k triangle
-* of the array A is not referenced.
-* The following program segment will transfer an upper
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = K + 1 - J
-* DO 10, I = MAX( 1, J - K ), J
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
-* by n part of the array A must contain the lower triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row 1 of
-* the array, the first sub-diagonal starting at position 1 in
-* row 2, and so on. The bottom right k by k triangle of the
-* array A is not referenced.
-* The following program segment will transfer a lower
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = 1 - J
-* DO 10, I = J, MIN( N, J + K )
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Note that when DIAG = 'U' or 'u' the elements of the array A
-* corresponding to the diagonal elements of the matrix are not
-* referenced, but are assumed to be unity.
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( k + 1 ).
-* Unchanged on exit.
-*
-* X - DOUBLE PRECISION array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the n
-* element right-hand side vector b. On exit, X is overwritten
-* with the solution vector x.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-*
-* .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D+0 )
-* .. Local Scalars ..
- DOUBLE PRECISION TEMP
- INTEGER I, INFO, IX, J, JX, KPLUS1, KX, L
- LOGICAL NOUNIT
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
-* ..
-* .. Executable Statements ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF ( .NOT.LSAME( UPLO , 'U' ).AND.
- $ .NOT.LSAME( UPLO , 'L' ) )THEN
- INFO = 1
- ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
- $ .NOT.LSAME( TRANS, 'T' ).AND.
- $ .NOT.LSAME( TRANS, 'C' ) )THEN
- INFO = 2
- ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
- $ .NOT.LSAME( DIAG , 'N' ) )THEN
- INFO = 3
- ELSE IF( N.LT.0 )THEN
- INFO = 4
- ELSE IF( K.LT.0 )THEN
- INFO = 5
- ELSE IF( LDA.LT.( K + 1 ) )THEN
- INFO = 7
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 9
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'DTBSV ', INFO )
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF( N.EQ.0 )
- $ RETURN
-*
- NOUNIT = LSAME( DIAG, 'N' )
-*
-* Set up the start point in X if the increment is not unity. This
-* will be ( N - 1 )*INCX too small for descending loops.
-*
- IF( INCX.LE.0 )THEN
- KX = 1 - ( N - 1 )*INCX
- ELSE IF( INCX.NE.1 )THEN
- KX = 1
- END IF
-*
-* Start the operations. In this version the elements of A are
-* accessed by sequentially with one pass through A.
-*
- IF( LSAME( TRANS, 'N' ) )THEN
-*
-* Form x := inv( A )*x.
-*
- IF( LSAME( UPLO, 'U' ) )THEN
- KPLUS1 = K + 1
- IF( INCX.EQ.1 )THEN
- DO 20, J = N, 1, -1
- IF( X( J ).NE.ZERO )THEN
- L = KPLUS1 - J
- IF( NOUNIT )
- $ X( J ) = X( J )/A( KPLUS1, J )
- TEMP = X( J )
- DO 10, I = J - 1, MAX( 1, J - K ), -1
- X( I ) = X( I ) - TEMP*A( L + I, J )
- 10 CONTINUE
- END IF
- 20 CONTINUE
- ELSE
- KX = KX + ( N - 1 )*INCX
- JX = KX
- DO 40, J = N, 1, -1
- KX = KX - INCX
- IF( X( JX ).NE.ZERO )THEN
- IX = KX
- L = KPLUS1 - J
- IF( NOUNIT )
- $ X( JX ) = X( JX )/A( KPLUS1, J )
- TEMP = X( JX )
- DO 30, I = J - 1, MAX( 1, J - K ), -1
- X( IX ) = X( IX ) - TEMP*A( L + I, J )
- IX = IX - INCX
- 30 CONTINUE
- END IF
- JX = JX - INCX
- 40 CONTINUE
- END IF
- ELSE
- IF( INCX.EQ.1 )THEN
- DO 60, J = 1, N
- IF( X( J ).NE.ZERO )THEN
- L = 1 - J
- IF( NOUNIT )
- $ X( J ) = X( J )/A( 1, J )
- TEMP = X( J )
- DO 50, I = J + 1, MIN( N, J + K )
- X( I ) = X( I ) - TEMP*A( L + I, J )
- 50 CONTINUE
- END IF
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80, J = 1, N
- KX = KX + INCX
- IF( X( JX ).NE.ZERO )THEN
- IX = KX
- L = 1 - J
- IF( NOUNIT )
- $ X( JX ) = X( JX )/A( 1, J )
- TEMP = X( JX )
- DO 70, I = J + 1, MIN( N, J + K )
- X( IX ) = X( IX ) - TEMP*A( L + I, J )
- IX = IX + INCX
- 70 CONTINUE
- END IF
- JX = JX + INCX
- 80 CONTINUE
- END IF
- END IF
- ELSE
-*
-* Form x := inv( A')*x.
-*
- IF( LSAME( UPLO, 'U' ) )THEN
- KPLUS1 = K + 1
- IF( INCX.EQ.1 )THEN
- DO 100, J = 1, N
- TEMP = X( J )
- L = KPLUS1 - J
- DO 90, I = MAX( 1, J - K ), J - 1
- TEMP = TEMP - A( L + I, J )*X( I )
- 90 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/A( KPLUS1, J )
- X( J ) = TEMP
- 100 CONTINUE
- ELSE
- JX = KX
- DO 120, J = 1, N
- TEMP = X( JX )
- IX = KX
- L = KPLUS1 - J
- DO 110, I = MAX( 1, J - K ), J - 1
- TEMP = TEMP - A( L + I, J )*X( IX )
- IX = IX + INCX
- 110 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/A( KPLUS1, J )
- X( JX ) = TEMP
- JX = JX + INCX
- IF( J.GT.K )
- $ KX = KX + INCX
- 120 CONTINUE
- END IF
- ELSE
- IF( INCX.EQ.1 )THEN
- DO 140, J = N, 1, -1
- TEMP = X( J )
- L = 1 - J
- DO 130, I = MIN( N, J + K ), J + 1, -1
- TEMP = TEMP - A( L + I, J )*X( I )
- 130 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/A( 1, J )
- X( J ) = TEMP
- 140 CONTINUE
- ELSE
- KX = KX + ( N - 1 )*INCX
- JX = KX
- DO 160, J = N, 1, -1
- TEMP = X( JX )
- IX = KX
- L = 1 - J
- DO 150, I = MIN( N, J + K ), J + 1, -1
- TEMP = TEMP - A( L + I, J )*X( IX )
- IX = IX - INCX
- 150 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/A( 1, J )
- X( JX ) = TEMP
- JX = JX - INCX
- IF( ( N - J ).GE.K )
- $ KX = KX - INCX
- 160 CONTINUE
- END IF
- END IF
- END IF
-*
- RETURN
-*
-* End of DTBSV .
-*
- END