summaryrefslogtreecommitdiff
path: root/src/lib/blas/dsymv.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/blas/dsymv.f')
-rw-r--r--src/lib/blas/dsymv.f262
1 files changed, 0 insertions, 262 deletions
diff --git a/src/lib/blas/dsymv.f b/src/lib/blas/dsymv.f
deleted file mode 100644
index 7592d156..00000000
--- a/src/lib/blas/dsymv.f
+++ /dev/null
@@ -1,262 +0,0 @@
- SUBROUTINE DSYMV ( UPLO, N, ALPHA, A, LDA, X, INCX,
- $ BETA, Y, INCY )
-* .. Scalar Arguments ..
- DOUBLE PRECISION ALPHA, BETA
- INTEGER INCX, INCY, LDA, N
- CHARACTER*1 UPLO
-* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
-* ..
-*
-* Purpose
-* =======
-*
-* DSYMV performs the matrix-vector operation
-*
-* y := alpha*A*x + beta*y,
-*
-* where alpha and beta are scalars, x and y are n element vectors and
-* A is an n by n symmetric matrix.
-*
-* Parameters
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the upper or lower
-* triangular part of the array A is to be referenced as
-* follows:
-*
-* UPLO = 'U' or 'u' Only the upper triangular part of A
-* is to be referenced.
-*
-* UPLO = 'L' or 'l' Only the lower triangular part of A
-* is to be referenced.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* ALPHA - DOUBLE PRECISION.
-* On entry, ALPHA specifies the scalar alpha.
-* Unchanged on exit.
-*
-* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
-* Before entry with UPLO = 'U' or 'u', the leading n by n
-* upper triangular part of the array A must contain the upper
-* triangular part of the symmetric matrix and the strictly
-* lower triangular part of A is not referenced.
-* Before entry with UPLO = 'L' or 'l', the leading n by n
-* lower triangular part of the array A must contain the lower
-* triangular part of the symmetric matrix and the strictly
-* upper triangular part of A is not referenced.
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* max( 1, n ).
-* Unchanged on exit.
-*
-* X - DOUBLE PRECISION array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the n
-* element vector x.
-* Unchanged on exit.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* BETA - DOUBLE PRECISION.
-* On entry, BETA specifies the scalar beta. When BETA is
-* supplied as zero then Y need not be set on input.
-* Unchanged on exit.
-*
-* Y - DOUBLE PRECISION array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCY ) ).
-* Before entry, the incremented array Y must contain the n
-* element vector y. On exit, Y is overwritten by the updated
-* vector y.
-*
-* INCY - INTEGER.
-* On entry, INCY specifies the increment for the elements of
-* Y. INCY must not be zero.
-* Unchanged on exit.
-*
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-*
-* .. Parameters ..
- DOUBLE PRECISION ONE , ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
-* .. Local Scalars ..
- DOUBLE PRECISION TEMP1, TEMP2
- INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* .. Intrinsic Functions ..
- INTRINSIC MAX
-* ..
-* .. Executable Statements ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF ( .NOT.LSAME( UPLO, 'U' ).AND.
- $ .NOT.LSAME( UPLO, 'L' ) )THEN
- INFO = 1
- ELSE IF( N.LT.0 )THEN
- INFO = 2
- ELSE IF( LDA.LT.MAX( 1, N ) )THEN
- INFO = 5
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 7
- ELSE IF( INCY.EQ.0 )THEN
- INFO = 10
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'DSYMV ', INFO )
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
- $ RETURN
-*
-* Set up the start points in X and Y.
-*
- IF( INCX.GT.0 )THEN
- KX = 1
- ELSE
- KX = 1 - ( N - 1 )*INCX
- END IF
- IF( INCY.GT.0 )THEN
- KY = 1
- ELSE
- KY = 1 - ( N - 1 )*INCY
- END IF
-*
-* Start the operations. In this version the elements of A are
-* accessed sequentially with one pass through the triangular part
-* of A.
-*
-* First form y := beta*y.
-*
- IF( BETA.NE.ONE )THEN
- IF( INCY.EQ.1 )THEN
- IF( BETA.EQ.ZERO )THEN
- DO 10, I = 1, N
- Y( I ) = ZERO
- 10 CONTINUE
- ELSE
- DO 20, I = 1, N
- Y( I ) = BETA*Y( I )
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF( BETA.EQ.ZERO )THEN
- DO 30, I = 1, N
- Y( IY ) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40, I = 1, N
- Y( IY ) = BETA*Y( IY )
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF( ALPHA.EQ.ZERO )
- $ RETURN
- IF( LSAME( UPLO, 'U' ) )THEN
-*
-* Form y when A is stored in upper triangle.
-*
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 60, J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- DO 50, I = 1, J - 1
- Y( I ) = Y( I ) + TEMP1*A( I, J )
- TEMP2 = TEMP2 + A( I, J )*X( I )
- 50 CONTINUE
- Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80, J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- IX = KX
- IY = KY
- DO 70, I = 1, J - 1
- Y( IY ) = Y( IY ) + TEMP1*A( I, J )
- TEMP2 = TEMP2 + A( I, J )*X( IX )
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- 80 CONTINUE
- END IF
- ELSE
-*
-* Form y when A is stored in lower triangle.
-*
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 100, J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- Y( J ) = Y( J ) + TEMP1*A( J, J )
- DO 90, I = J + 1, N
- Y( I ) = Y( I ) + TEMP1*A( I, J )
- TEMP2 = TEMP2 + A( I, J )*X( I )
- 90 CONTINUE
- Y( J ) = Y( J ) + ALPHA*TEMP2
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120, J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- Y( JY ) = Y( JY ) + TEMP1*A( J, J )
- IX = JX
- IY = JY
- DO 110, I = J + 1, N
- IX = IX + INCX
- IY = IY + INCY
- Y( IY ) = Y( IY ) + TEMP1*A( I, J )
- TEMP2 = TEMP2 + A( I, J )*X( IX )
- 110 CONTINUE
- Y( JY ) = Y( JY ) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- 120 CONTINUE
- END IF
- END IF
-*
- RETURN
-*
-* End of DSYMV .
-*
- END