diff options
Diffstat (limited to 'src/lib/blas/dsymm.f')
-rw-r--r-- | src/lib/blas/dsymm.f | 294 |
1 files changed, 0 insertions, 294 deletions
diff --git a/src/lib/blas/dsymm.f b/src/lib/blas/dsymm.f deleted file mode 100644 index 0f251417..00000000 --- a/src/lib/blas/dsymm.f +++ /dev/null @@ -1,294 +0,0 @@ - SUBROUTINE DSYMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, - $ BETA, C, LDC ) -* .. Scalar Arguments .. - CHARACTER*1 SIDE, UPLO - INTEGER M, N, LDA, LDB, LDC - DOUBLE PRECISION ALPHA, BETA -* .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ) -* .. -* -* Purpose -* ======= -* -* DSYMM performs one of the matrix-matrix operations -* -* C := alpha*A*B + beta*C, -* -* or -* -* C := alpha*B*A + beta*C, -* -* where alpha and beta are scalars, A is a symmetric matrix and B and -* C are m by n matrices. -* -* Parameters -* ========== -* -* SIDE - CHARACTER*1. -* On entry, SIDE specifies whether the symmetric matrix A -* appears on the left or right in the operation as follows: -* -* SIDE = 'L' or 'l' C := alpha*A*B + beta*C, -* -* SIDE = 'R' or 'r' C := alpha*B*A + beta*C, -* -* Unchanged on exit. -* -* UPLO - CHARACTER*1. -* On entry, UPLO specifies whether the upper or lower -* triangular part of the symmetric matrix A is to be -* referenced as follows: -* -* UPLO = 'U' or 'u' Only the upper triangular part of the -* symmetric matrix is to be referenced. -* -* UPLO = 'L' or 'l' Only the lower triangular part of the -* symmetric matrix is to be referenced. -* -* Unchanged on exit. -* -* M - INTEGER. -* On entry, M specifies the number of rows of the matrix C. -* M must be at least zero. -* Unchanged on exit. -* -* N - INTEGER. -* On entry, N specifies the number of columns of the matrix C. -* N must be at least zero. -* Unchanged on exit. -* -* ALPHA - DOUBLE PRECISION. -* On entry, ALPHA specifies the scalar alpha. -* Unchanged on exit. -* -* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is -* m when SIDE = 'L' or 'l' and is n otherwise. -* Before entry with SIDE = 'L' or 'l', the m by m part of -* the array A must contain the symmetric matrix, such that -* when UPLO = 'U' or 'u', the leading m by m upper triangular -* part of the array A must contain the upper triangular part -* of the symmetric matrix and the strictly lower triangular -* part of A is not referenced, and when UPLO = 'L' or 'l', -* the leading m by m lower triangular part of the array A -* must contain the lower triangular part of the symmetric -* matrix and the strictly upper triangular part of A is not -* referenced. -* Before entry with SIDE = 'R' or 'r', the n by n part of -* the array A must contain the symmetric matrix, such that -* when UPLO = 'U' or 'u', the leading n by n upper triangular -* part of the array A must contain the upper triangular part -* of the symmetric matrix and the strictly lower triangular -* part of A is not referenced, and when UPLO = 'L' or 'l', -* the leading n by n lower triangular part of the array A -* must contain the lower triangular part of the symmetric -* matrix and the strictly upper triangular part of A is not -* referenced. -* Unchanged on exit. -* -* LDA - INTEGER. -* On entry, LDA specifies the first dimension of A as declared -* in the calling (sub) program. When SIDE = 'L' or 'l' then -* LDA must be at least max( 1, m ), otherwise LDA must be at -* least max( 1, n ). -* Unchanged on exit. -* -* B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). -* Before entry, the leading m by n part of the array B must -* contain the matrix B. -* Unchanged on exit. -* -* LDB - INTEGER. -* On entry, LDB specifies the first dimension of B as declared -* in the calling (sub) program. LDB must be at least -* max( 1, m ). -* Unchanged on exit. -* -* BETA - DOUBLE PRECISION. -* On entry, BETA specifies the scalar beta. When BETA is -* supplied as zero then C need not be set on input. -* Unchanged on exit. -* -* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). -* Before entry, the leading m by n part of the array C must -* contain the matrix C, except when beta is zero, in which -* case C need not be set on entry. -* On exit, the array C is overwritten by the m by n updated -* matrix. -* -* LDC - INTEGER. -* On entry, LDC specifies the first dimension of C as declared -* in the calling (sub) program. LDC must be at least -* max( 1, m ). -* Unchanged on exit. -* -* -* Level 3 Blas routine. -* -* -- Written on 8-February-1989. -* Jack Dongarra, Argonne National Laboratory. -* Iain Duff, AERE Harwell. -* Jeremy Du Croz, Numerical Algorithms Group Ltd. -* Sven Hammarling, Numerical Algorithms Group Ltd. -* -* -* .. External Functions .. - LOGICAL LSAME - EXTERNAL LSAME -* .. External Subroutines .. - EXTERNAL XERBLA -* .. Intrinsic Functions .. - INTRINSIC MAX -* .. Local Scalars .. - LOGICAL UPPER - INTEGER I, INFO, J, K, NROWA - DOUBLE PRECISION TEMP1, TEMP2 -* .. Parameters .. - DOUBLE PRECISION ONE , ZERO - PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) -* .. -* .. Executable Statements .. -* -* Set NROWA as the number of rows of A. -* - IF( LSAME( SIDE, 'L' ) )THEN - NROWA = M - ELSE - NROWA = N - END IF - UPPER = LSAME( UPLO, 'U' ) -* -* Test the input parameters. -* - INFO = 0 - IF( ( .NOT.LSAME( SIDE, 'L' ) ).AND. - $ ( .NOT.LSAME( SIDE, 'R' ) ) )THEN - INFO = 1 - ELSE IF( ( .NOT.UPPER ).AND. - $ ( .NOT.LSAME( UPLO, 'L' ) ) )THEN - INFO = 2 - ELSE IF( M .LT.0 )THEN - INFO = 3 - ELSE IF( N .LT.0 )THEN - INFO = 4 - ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN - INFO = 7 - ELSE IF( LDB.LT.MAX( 1, M ) )THEN - INFO = 9 - ELSE IF( LDC.LT.MAX( 1, M ) )THEN - INFO = 12 - END IF - IF( INFO.NE.0 )THEN - CALL XERBLA( 'DSYMM ', INFO ) - RETURN - END IF -* -* Quick return if possible. -* - IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. - $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) - $ RETURN -* -* And when alpha.eq.zero. -* - IF( ALPHA.EQ.ZERO )THEN - IF( BETA.EQ.ZERO )THEN - DO 20, J = 1, N - DO 10, I = 1, M - C( I, J ) = ZERO - 10 CONTINUE - 20 CONTINUE - ELSE - DO 40, J = 1, N - DO 30, I = 1, M - C( I, J ) = BETA*C( I, J ) - 30 CONTINUE - 40 CONTINUE - END IF - RETURN - END IF -* -* Start the operations. -* - IF( LSAME( SIDE, 'L' ) )THEN -* -* Form C := alpha*A*B + beta*C. -* - IF( UPPER )THEN - DO 70, J = 1, N - DO 60, I = 1, M - TEMP1 = ALPHA*B( I, J ) - TEMP2 = ZERO - DO 50, K = 1, I - 1 - C( K, J ) = C( K, J ) + TEMP1 *A( K, I ) - TEMP2 = TEMP2 + B( K, J )*A( K, I ) - 50 CONTINUE - IF( BETA.EQ.ZERO )THEN - C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2 - ELSE - C( I, J ) = BETA *C( I, J ) + - $ TEMP1*A( I, I ) + ALPHA*TEMP2 - END IF - 60 CONTINUE - 70 CONTINUE - ELSE - DO 100, J = 1, N - DO 90, I = M, 1, -1 - TEMP1 = ALPHA*B( I, J ) - TEMP2 = ZERO - DO 80, K = I + 1, M - C( K, J ) = C( K, J ) + TEMP1 *A( K, I ) - TEMP2 = TEMP2 + B( K, J )*A( K, I ) - 80 CONTINUE - IF( BETA.EQ.ZERO )THEN - C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2 - ELSE - C( I, J ) = BETA *C( I, J ) + - $ TEMP1*A( I, I ) + ALPHA*TEMP2 - END IF - 90 CONTINUE - 100 CONTINUE - END IF - ELSE -* -* Form C := alpha*B*A + beta*C. -* - DO 170, J = 1, N - TEMP1 = ALPHA*A( J, J ) - IF( BETA.EQ.ZERO )THEN - DO 110, I = 1, M - C( I, J ) = TEMP1*B( I, J ) - 110 CONTINUE - ELSE - DO 120, I = 1, M - C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J ) - 120 CONTINUE - END IF - DO 140, K = 1, J - 1 - IF( UPPER )THEN - TEMP1 = ALPHA*A( K, J ) - ELSE - TEMP1 = ALPHA*A( J, K ) - END IF - DO 130, I = 1, M - C( I, J ) = C( I, J ) + TEMP1*B( I, K ) - 130 CONTINUE - 140 CONTINUE - DO 160, K = J + 1, N - IF( UPPER )THEN - TEMP1 = ALPHA*A( J, K ) - ELSE - TEMP1 = ALPHA*A( K, J ) - END IF - DO 150, I = 1, M - C( I, J ) = C( I, J ) + TEMP1*B( I, K ) - 150 CONTINUE - 160 CONTINUE - 170 CONTINUE - END IF -* - RETURN -* -* End of DSYMM . -* - END |