summaryrefslogtreecommitdiff
path: root/src/elementaryFunctions/atan/catans.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/elementaryFunctions/atan/catans.c')
-rw-r--r--src/elementaryFunctions/atan/catans.c297
1 files changed, 295 insertions, 2 deletions
diff --git a/src/elementaryFunctions/atan/catans.c b/src/elementaryFunctions/atan/catans.c
index ba5fdc2f..ba448d96 100644
--- a/src/elementaryFunctions/atan/catans.c
+++ b/src/elementaryFunctions/atan/catans.c
@@ -10,9 +10,302 @@
*
*/
+/*
+ PURPOSE
+ watan compute the arctangent of a complex number
+ y = yr + i yi = atan(x), x = xr + i xi
+
+ CALLING LIST / PARAMETERS
+ subroutine watan(xr,xi,yr,yi)
+ double precision xr,xi,yr,yi
+
+ xr,xi: real and imaginary parts of the complex number
+ yr,yi: real and imaginary parts of the result
+ yr,yi may have the same memory cases than xr et xi
+
+ COPYRIGHT (C) 2001 Bruno Pincon and Lydia van Dijk
+ Written by Bruno Pincon <Bruno.Pincon@iecn.u-nancy.fr> so
+ as to get more precision. Also to fix the
+ behavior at the singular points and at the branch cuts.
+ Polished by Lydia van Dijk
+ <lvandijk@hammersmith-consulting.com>
+
+ CHANGES : - (Bruno on 2001 May 22) for ysptrk use a
+ minimax polynome to enlarge the special
+ evaluation zone |s| < SLIM. Also rename
+ this function as lnp1m1.
+ - (Bruno on 2001 June 7) better handling
+ of spurious over/underflow ; remove
+ the call to pythag ; better accuracy
+ in the real part for z near +-i
+
+ EXTERNALS FUNCTIONS
+ dlamch
+ lnp1m1 (at the end of this file)
+
+ ALGORITHM : noting z = a + i*b, we have:
+ Z = yr + yi*b = arctan(z) = (i/2) * log( (i+z)/(i-z) )
+
+ This function has two branch points at +i and -i and the
+ chosen branch cuts are the two half-straight lines
+ D1 = [i, i*oo) and D2 = (-i*oo, i]. The function is then
+ analytic in C \ (D1 U D2)).
+
+ From the definition it follows that:
+
+ yr = 0.5 Arg ( (i+z)/(i-z) ) (1)
+ yi = 0.5 log (|(i+z)/(i-z)|) (2)
+
+ so lim (z -> +- i) yr = undefined (and Nan is logical)
+ lim (z -> +i) yi = +oo
+ lim (z -> -i) yi = -oo
+
+ The real part of arctan(z) is discontinuous across D1 and D2
+ and we impose the following definitions:
+ if imag(z) > 1 then
+ Arg(arctan(z)) = pi/2 (=lim real(z) -> 0+)
+ if imag(z) < 1 then
+ Arg(arctan(z)) = -pi/2 (=lim real(z) -> 0-)
+
+
+ Basic evaluation: if we write (i+z)/(i-z) using
+ z = a + i*b, we get:
+
+ i+z 1-(a**2+b**2) + i*(2a)
+ --- = ----------------------
+ i-z a**2 + (1-b)**2
+
+ then, with r2 = |z|^2 = a**2 + b**2 :
+
+ yr = 0.5 * Arg(1-r2 + (2*a)*i)
+ = 0.5 * atan2(2a, (1-r2)) (3)
+
+ This formula is changed when r2 > RMAX (max pos float)
+ and also when |1-r2| and |a| are near 0 (see comments
+ in the code).
+
+ After some math:
+
+ yi = 0.25 * log( (a**2 + (b + 1)**2) /
+ (a**2 + (b - 1)**2) ) (4)
+
+ Evaluation for "big" |z|
+ ------------------------
+
+ If |z| is "big", the direct evaluation of yi by (4) may
+ suffer of innaccuracies and of spurious overflow. Noting
+ that s = 2 b / (1 + |z|**2), we have:
+
+ yi = 0.25 log ( (1 + s)/(1 - s) ) (5)
+
+ 3 5
+ yi = 0.25*( 2 * ( s + 1/3 s + 1/5 s + ... ))
+
+ yi = 0.25 * lnp1m1(s) if |s| < SLIM
+
+ So if |s| is less than SLIM we switch to a special
+ evaluation done by the function lnp1m1. The
+ threshold value SLIM is choosen by experiment
+ (with the Pari-gp software). For |s|
+ "very small" we used a truncated taylor dvp,
+ else a minimax polynome (see lnp1m1).
+
+ To avoid spurious overflows (which result in spurious
+ underflows for s) in computing s with s= 2 b / (1 + |z|**2)
+ when |z|^2 > RMAX (max positive float) we use :
+
+ s = 2d0 / ( (a/b)*a + b )
+
+ but if |b| = Inf this formula leads to NaN when
+ |a| is also Inf. As we have :
+
+ |s| <= 2 / |b|
+
+ we impose simply : s = 0 when |b| = Inf
+
+ Evaluation for z very near to i or -i:
+ --------------------------------------
+ Floating point numbers of the form a+i or a-i with 0 <
+ a**2 < tiny (approximately 1d-308) may lead to underflow
+ (i.e., a**2 = 0) and the logarithm will break formula (4).
+ So we switch to the following formulas:
+
+ If b = +-1 and |a| < sqrt(tiny) approximately 1d-150 (say)
+ then (by using that a**2 + 4 = 4 in machine for such a):
+
+ yi = 0.5 * log( 2/|a| ) for b=1
+
+ yi = 0.5 * log( |a|/2 ) for b=-1
+
+ finally: yi = 0.5 * sign(b) * log( 2/|a| )
+ yi = 0.5 * sign(b) * (log(2) - log(|a|)) (6)
+
+ The last trick is to avoid overflow for |a|=tiny! In fact
+ this formula may be used until a**2 + 4 = 4 so that the
+ threshold value may be larger.
+*/
+
+#include <math.h>
#include "atan.h"
+#include "abs.h"
+#include "lapack.h"
+
+#define _sign(a, b) b >=0 ? a : -a
+
+/*
+ PURPOSE : Compute v = log ( (1 + s)/(1 - s) )
+ for small s, this is for |s| < SLIM = 0.20
+
+ ALGORITHM :
+ 1/ if |s| is "very small" we use a truncated
+ taylor dvp (by keeping 3 terms) from :
+ 2 4 6
+ t = 2 * s * ( 1 + 1/3 s + 1/5 s + [ 1/7 s + ....] )
+ 2 4
+ t = 2 * s * ( 1 + 1/3 s + 1/5 s + er)
+
+ The limit E until we use this formula may be simply
+ gotten so that the negliged part er is such that :
+ 2 4
+ (#) er <= epsm * ( 1 + 1/3 s + 1/5 s ) for all |s|<= E
+
+ As er = 1/7 s^6 + 1/9 s^8 + ...
+ er <= 1/7 * s^6 ( 1 + s^2 + s^4 + ...) = 1/7 s^6/(1-s^2)
+
+ the inequality (#) is forced if :
+
+ 1/7 s^6 / (1-s^2) <= epsm * ( 1 + 1/3 s^2 + 1/5 s^4 )
+
+ s^6 <= 7 epsm * (1 - 2/3 s^2 - 3/15 s^4 - 1/5 s^6)
+
+ So that E is very near (7 epsm)^(1/6) (approximately 3.032d-3):
+
+ 2/ For larger |s| we used a minimax polynome :
+
+ yi = s * (2 + d3 s^3 + d5 s^5 .... + d13 s^13 + d15 s^15)
+
+ This polynome was computed (by some remes algorithm) following
+ (*) the sin(x) example (p 39) of the book :
+
+ "ELEMENTARY FUNCTIONS"
+ "Algorithms and implementation"
+ J.M. Muller (Birkhauser)
+
+ (*) without the additionnal raffinement to get the first coefs
+ very near floating point numbers)
+*/
+static float lnp1m1(float _dblVar)
+{
+ static float sdblD3 = 0.66666666666672679472f;
+ static float sdblD5 = 0.39999999996176889299f;
+ static float sdblD7 = 0.28571429392829380980f;
+ static float sdblD9 = 0.22222138684562683797f;
+ static float sdblD11 = 0.18186349187499222459f;
+ static float sdblD13 = 0.15250315884469364710f;
+ static float sdblD15 = 0.15367270224757008114f;
+ static float sdblE = 3.032E-3f;
+ static float sdblC3 = 2.0f/3.0f;
+ static float sdblC5 = 2.0f/5.0f;
+
+ float dblS2 = _dblVar * _dblVar;
+ if( dabss(_dblVar) <= sdblE)
+ return _dblVar * (2 + dblS2 * (sdblC3 + sdblC5 * dblS2));
+ else
+ return _dblVar * (2 + dblS2 * (sdblD3 + dblS2 * (sdblD5 + dblS2 * (sdblD7 + dblS2 * (sdblD9 + dblS2 * (sdblD11 + dblS2 * (sdblD13 + dblS2 * sdblD15)))))));
+}
+
+
floatComplex catans(floatComplex z) {
- /* FIXME : Let's code... */
- return z;
+ static float sSlim = 0.2f;
+ /* .
+ ** / \ WARNING : this algorithm was based on double precision
+ ** / ! \ using float truncate the value to 0.
+ ** `----'
+ **
+ ** static float sAlim = 1E-150f;
+ */
+ static float sAlim = 0.0f;
+ static float sTol = 0.3f;
+ static float sLn2 = 0.6931471805599453094172321f;
+
+ float RMax = (float) getOverflowThreshold();
+ float Pi_2 = 2.0f * satans(1);
+
+ float _inReal = creals(z);
+ float _inImg = cimags(z);
+ float _outReal = 0;
+ float _outImg = 0;
+
+ /* Temporary variables */
+ float R2 = 0;
+ float S = 0;
+
+
+ if(_inImg == 0)
+ {
+ _outReal = satans(_inReal);
+ _outImg = 0;
+ }
+ else
+ {
+ R2 = _inReal * _inReal + _inImg * _inImg; /* Oo */
+ if(R2 > RMax)
+ {
+ if( dabss(_inImg) > RMax)
+ S = 0;
+ else
+ S = 1.0f / (((0.5f * _inReal) / _inImg) * _inReal + 0.5f * _inImg );
+ }
+ else
+ S = (2 * _inImg) / (1+R2);
+
+ if(dabss(S) < sSlim)
+ {
+ /*
+ s is small: |s| < SLIM <=> |z| outside the following disks:
+ D+ = D(center = [0; 1/slim], radius = sqrt(1/slim**2 - 1)) if b > 0
+ D- = D(center = [0; -1/slim], radius = sqrt(1/slim**2 - 1)) if b < 0
+ use the special evaluation of log((1+s)/(1-s)) (5)
+ */
+ _outImg = lnp1m1(S) * 0.25f;
+ }
+ else
+ {
+ if(sabss(S) == 1 && sabss(_inReal) <= sAlim)
+ {
+ /* |s| >= SLIM => |z| is inside D+ or D- */
+ _outImg = _sign(0.5f,_inImg) * ( sLn2 - logf(sabss(_inReal)));
+ }
+ else
+ {
+ _outImg = 0.25f * logf((powf(_inReal,2) + powf((_inImg + 1.0f),2)) / (powf(_inReal,2) + powf((_inImg - 1.0f),2)));
+ }
+ }
+ if(_inReal == 0)
+ {/* z is purely imaginary */
+ if( dabss(_inImg) > 1)
+ {/* got sign(b) * pi/2 */
+ _outReal = _sign(1, _inImg) * Pi_2;
+ }
+ else if( dabss(_inImg) == 1)
+ {/* got a Nan with 0/0 */
+ _outReal = (_inReal - _inReal) / (_inReal - _inReal); /* Oo */
+ }
+ else
+ _outReal = 0;
+ }
+ else if(R2 > RMax)
+ {/* _outImg is necessarily very near sign(a)* pi/2 */
+ _outReal = _sign(1, _inReal) * Pi_2;
+ }
+ else if(sabss(1 - R2) + sabss(_inReal) <= sTol)
+ {/* |b| is very near 1 (and a is near 0) some cancellation occur in the (next) generic formula */
+ _outReal = 0.5f * atan2f(2.0f * _inReal, (1.0f - _inImg) * (1.0f + _inImg) - powf(_inReal,2.0f));
+ }
+ else
+ _outReal = 0.5f * atan2f(2.0f * _inReal, 1.0f - R2);
+ }
+
+ return FloatComplex(_outReal, _outImg);
}