summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/elementaryFunctions/atan/catans.c67
-rw-r--r--src/elementaryFunctions/atan/zatans.c69
2 files changed, 5 insertions, 131 deletions
diff --git a/src/elementaryFunctions/atan/catans.c b/src/elementaryFunctions/atan/catans.c
index ba448d96..d3a232fb 100644
--- a/src/elementaryFunctions/atan/catans.c
+++ b/src/elementaryFunctions/atan/catans.c
@@ -148,74 +148,11 @@
#include <math.h>
#include "atan.h"
#include "abs.h"
+#include "lnp1m1.h"
#include "lapack.h"
#define _sign(a, b) b >=0 ? a : -a
-/*
- PURPOSE : Compute v = log ( (1 + s)/(1 - s) )
- for small s, this is for |s| < SLIM = 0.20
-
- ALGORITHM :
- 1/ if |s| is "very small" we use a truncated
- taylor dvp (by keeping 3 terms) from :
- 2 4 6
- t = 2 * s * ( 1 + 1/3 s + 1/5 s + [ 1/7 s + ....] )
- 2 4
- t = 2 * s * ( 1 + 1/3 s + 1/5 s + er)
-
- The limit E until we use this formula may be simply
- gotten so that the negliged part er is such that :
- 2 4
- (#) er <= epsm * ( 1 + 1/3 s + 1/5 s ) for all |s|<= E
-
- As er = 1/7 s^6 + 1/9 s^8 + ...
- er <= 1/7 * s^6 ( 1 + s^2 + s^4 + ...) = 1/7 s^6/(1-s^2)
-
- the inequality (#) is forced if :
-
- 1/7 s^6 / (1-s^2) <= epsm * ( 1 + 1/3 s^2 + 1/5 s^4 )
-
- s^6 <= 7 epsm * (1 - 2/3 s^2 - 3/15 s^4 - 1/5 s^6)
-
- So that E is very near (7 epsm)^(1/6) (approximately 3.032d-3):
-
- 2/ For larger |s| we used a minimax polynome :
-
- yi = s * (2 + d3 s^3 + d5 s^5 .... + d13 s^13 + d15 s^15)
-
- This polynome was computed (by some remes algorithm) following
- (*) the sin(x) example (p 39) of the book :
-
- "ELEMENTARY FUNCTIONS"
- "Algorithms and implementation"
- J.M. Muller (Birkhauser)
-
- (*) without the additionnal raffinement to get the first coefs
- very near floating point numbers)
-*/
-static float lnp1m1(float _dblVar)
-{
- static float sdblD3 = 0.66666666666672679472f;
- static float sdblD5 = 0.39999999996176889299f;
- static float sdblD7 = 0.28571429392829380980f;
- static float sdblD9 = 0.22222138684562683797f;
- static float sdblD11 = 0.18186349187499222459f;
- static float sdblD13 = 0.15250315884469364710f;
- static float sdblD15 = 0.15367270224757008114f;
- static float sdblE = 3.032E-3f;
- static float sdblC3 = 2.0f/3.0f;
- static float sdblC5 = 2.0f/5.0f;
-
- float dblS2 = _dblVar * _dblVar;
- if( dabss(_dblVar) <= sdblE)
- return _dblVar * (2 + dblS2 * (sdblC3 + sdblC5 * dblS2));
- else
- return _dblVar * (2 + dblS2 * (sdblD3 + dblS2 * (sdblD5 + dblS2 * (sdblD7 + dblS2 * (sdblD9 + dblS2 * (sdblD11 + dblS2 * (sdblD13 + dblS2 * sdblD15)))))));
-}
-
-
-
floatComplex catans(floatComplex z) {
static float sSlim = 0.2f;
/* .
@@ -268,7 +205,7 @@ floatComplex catans(floatComplex z) {
D- = D(center = [0; -1/slim], radius = sqrt(1/slim**2 - 1)) if b < 0
use the special evaluation of log((1+s)/(1-s)) (5)
*/
- _outImg = lnp1m1(S) * 0.25f;
+ _outImg = slnp1m1s(S) * 0.25f;
}
else
{
diff --git a/src/elementaryFunctions/atan/zatans.c b/src/elementaryFunctions/atan/zatans.c
index 0c8ed72e..c511d790 100644
--- a/src/elementaryFunctions/atan/zatans.c
+++ b/src/elementaryFunctions/atan/zatans.c
@@ -146,76 +146,13 @@
*/
#include <math.h>
+#include "lapack.h"
#include "atan.h"
#include "abs.h"
-#include "lapack.h"
+#include "lnp1m1.h"
#define _sign(a, b) b >=0 ? a : -a
-/*
- PURPOSE : Compute v = log ( (1 + s)/(1 - s) )
- for small s, this is for |s| < SLIM = 0.20
-
- ALGORITHM :
- 1/ if |s| is "very small" we use a truncated
- taylor dvp (by keeping 3 terms) from :
- 2 4 6
- t = 2 * s * ( 1 + 1/3 s + 1/5 s + [ 1/7 s + ....] )
- 2 4
- t = 2 * s * ( 1 + 1/3 s + 1/5 s + er)
-
- The limit E until we use this formula may be simply
- gotten so that the negliged part er is such that :
- 2 4
- (#) er <= epsm * ( 1 + 1/3 s + 1/5 s ) for all |s|<= E
-
- As er = 1/7 s^6 + 1/9 s^8 + ...
- er <= 1/7 * s^6 ( 1 + s^2 + s^4 + ...) = 1/7 s^6/(1-s^2)
-
- the inequality (#) is forced if :
-
- 1/7 s^6 / (1-s^2) <= epsm * ( 1 + 1/3 s^2 + 1/5 s^4 )
-
- s^6 <= 7 epsm * (1 - 2/3 s^2 - 3/15 s^4 - 1/5 s^6)
-
- So that E is very near (7 epsm)^(1/6) (approximately 3.032d-3):
-
- 2/ For larger |s| we used a minimax polynome :
-
- yi = s * (2 + d3 s^3 + d5 s^5 .... + d13 s^13 + d15 s^15)
-
- This polynome was computed (by some remes algorithm) following
- (*) the sin(x) example (p 39) of the book :
-
- "ELEMENTARY FUNCTIONS"
- "Algorithms and implementation"
- J.M. Muller (Birkhauser)
-
- (*) without the additionnal raffinement to get the first coefs
- very near floating point numbers)
-*/
-static double lnp1m1(double _dblVar)
-{
- static double sdblD3 = 0.66666666666672679472;
- static double sdblD5 = 0.39999999996176889299;
- static double sdblD7 = 0.28571429392829380980;
- static double sdblD9 = 0.22222138684562683797;
- static double sdblD11 = 0.18186349187499222459;
- static double sdblD13 = 0.15250315884469364710;
- static double sdblD15 = 0.15367270224757008114;
- static double sdblE = 3.032E-3;
- static double sdblC3 = 2.0/3.0;
- static double sdblC5 = 2.0/5.0;
-
- double dblS2 = _dblVar * _dblVar;
- if( dabss(_dblVar) <= sdblE)
- return _dblVar * (2 + dblS2 * (sdblC3 + sdblC5 * dblS2));
- else
- return _dblVar * (2 + dblS2 * (sdblD3 + dblS2 * (sdblD5 + dblS2 * (sdblD7 + dblS2 * (sdblD9 + dblS2 * (sdblD11 + dblS2 * (sdblD13 + dblS2 * sdblD15)))))));
-}
-
-
-
doubleComplex zatans(doubleComplex z) {
static double sSlim = 0.2;
static double sAlim = 1E-150;
@@ -261,7 +198,7 @@ doubleComplex zatans(doubleComplex z) {
D- = D(center = [0; -1/slim], radius = sqrt(1/slim**2 - 1)) if b < 0
use the special evaluation of log((1+s)/(1-s)) (5)
*/
- _outImg = lnp1m1(S) * 0.25;
+ _outImg = dlnp1m1s(S) * 0.25;
}
else
{