/* autogenerated from "macros/Threshold/GENERAL_f.sci" */
function GENERAL_f() {
    GENERAL_f.prototype.define = function GENERAL_f() {
        rpar = [[0],[0],[0],[0]];
        in1 = 1;
        out = 1;
        model = scicos_model();
        model.sim = list("zcross",1);
        model.nzcross = in1;
        model.in1 = in1;
        model.evtout = ones(out,1);
        model.rpar = [[0],[0],[0],[0]];
        model.blocktype = "z";
        model.firing = -ones(out,1);
        model.dep_ut = [true,false];
        exprs = [[strcat(sci2exp(in1))],[strcat(sci2exp(out))]];
        gr_i = [];
        x = standard_define([3,2],model,exprs,gr_i);
    }
    GENERAL_f.prototype.details = function GENERAL_f() {
    }
    GENERAL_f.prototype.get = function GENERAL_f() {
    }
    GENERAL_f.prototype.set = function GENERAL_f() {
        x = arg1;
        graphics = arg1.graphics;
        exprs = graphics.exprs;
        model = arg1.model;
        rpar = model.rpar;
        in1 = model.in1;
        out = model.evtout;
        nin = sum(in1);
        nout = sum(out);
        [ok,in1,out,exprs] = scicos_getvalue("Set General Zero-Crossing parameters",[["Input size"],["Number of event output"]],list("vec",1,"vec",1),exprs);
        if (ok) {
        [model,graphics,ok] = check_io(model,graphics,in1,[],[],ones(out,1));
        if (ok) {
        nout1 = out;
        nin1 = in1;
        if (nout==nout1&&nin==nin1) {
        rp = matrix(rpar,nout,2^(2*nin));
        } else {
        rp = -1*ones(nout1,2^(2*nin1));
}
        n = size(rp,2)/2;
        result = x_mdialog("routing matrix",string(1,nout1),string(1,2^(2*nin1)),string(rp.slice().slice()));
        if (result!=[]) {
        rp.slice(1-1,nout1).slice(1-1,2*n) = evstr(result);
        model.nzcross = in1;
        model.rpar = rp.slice();
        model.firing = -ones(out,1);
        graphics.exprs = exprs;
        x.graphics = graphics;
        x.model = model;
}
}
}
    }
}