/* autogenerated from "macros/NonLinear/QUANT_f.sci" */ function QUANT_f() { QUANT_f.prototype.define = function QUANT_f() { pas = 0.1; meth = 1; model = scicos_model(); model.sim = "qzrnd"; model.in1 = -1; model.out = -1; model.rpar = pas; model.ipar = meth; model.blocktype = "c"; model.dep_ut = [true,false]; exprs = [[string(pas)],[string(meth)]]; gr_i = []; this.x = standard_define([2,2],model,exprs,gr_i); return new BasicBlock(this.x); } QUANT_f.prototype.details = function QUANT_f() { return this.x; } QUANT_f.prototype.get = function QUANT_f() { } QUANT_f.prototype.set = function QUANT_f() { this.x = arg1; graphics = arg1.graphics; exprs = graphics.exprs; model = arg1.model; while (true) { [ok,pas,meth,exprs] = scicos_getvalue("Set parameters",[["Step"],["Quantization Type (1-4)"]],list("vec",1,"vec",1),exprs); if (!ok) { break; } if (meth<1||meth>4) { message("Quantization Type must be from 1 to 4"); } else { rpar = pas; model.rpar = rpar; model.ipar = meth; switch (meth) { case 1: model.sim = "qzrnd"; case 2: model.sim = "qztrn"; case 3: model.sim = "qzflr"; case 4: model.sim = "qzcel"; } graphics.exprs = exprs; this.x.graphics = graphics; this.x.model = model; break; } } return new BasicBlock(this.x); } }